観測機器

Canon aps-c 安価標準ズームの進化

重野好彦

Canonはaps-c安価標準ズームを表1の様に4種類発売してきた。レンズ単体で購入すると2万5千円程する が、ボディキットで購入すると1万円程度である。それぞれ図1~3にMTF特性図を示す。第1世代と第1.5世 代の光学性能は同じであり図1になる。徐々に性能が向上している様子が分かるが、実際にはどのように写り 方が向上しているのか、遠くに置いた人形の写真(重野,カメラレンズ性能評価法の研究, MSS-145)を紹介する。

図4. 第1世代

図5. 第2世代

図6. 第3世代

図4~6は、被写体(人形)を視野中心から周辺に2/3の位置に設置した写真。全て18mm/F4。第1世代は色 収差があり、ぼやけている。初めて購入したデジタルー眼用レンズがこれだったため、非常にがっかりしたこ とを覚えている。第2世代以降、色収差はほとんど無くなり、画像もクリアになった。

図7. 第2世代

図8. 第3世代

図7~8は、被写体(人形)を視野左下端に設置した写真。どちらも18mm/F5.6。第2世代はややぼやけているが、第3世代はかなりクリヤになった。

キャノンはHPで第3世代のレンズをコンパクト化したと述べているが、高画質化したとは述べていない。 キットレンズはまだ第2世代である。良いことばかり書いたが、実はこのレンズは歪曲収差が大きい。

詳しくは <u>http://msswg.net/lens</u> を参照下さい。

定年から始める流星観測

2018年2月4日 流星物理セミナー: 平塚市博物館 天体観察会 永井和男

- 天体観察会
 - 平塚市博物館の年間会員制のサークル
 - 平塚市以外の方も参加出来ます(東京、千葉、山梨、神奈川)
 - 活動は
 - 天体観望会などの博物館のボランティア
 - 月例会(連絡事項、今月の天文現象、天文ニュース、コース別(観望・写真・研究))
 - 分科会(太陽、流星、アストロバイオロジー勉強会)
 - 合宿など

集合写真前列は若めの 人が並んでいますが、全 般に年齢層が高く、定年 過ぎの方も多いです。 観測経験者は私だけだ と思います。

大雑把に言って天体写 真を撮る人は半数程度、 残りは観望やプラネファン の人たちです。

流星分科会

- 2014年のしぶんぎ座流星群を切っ掛けに 分科会が発足しました
- 構成委員の多くが定年過ぎで天体写真の
 経験者が多いです
- 先生は平塚市博物館 藤井大地先生
- 観測に関するものを中心行っています
 - 観測概要
 - 流星の赤経・赤緯測定、ステレオネット使い方
 - プラネタリウムで擬似流星の係数観測
 - 観測してZHRを求める
 - 回転シャッター「流星号」計画
 - デジタルー眼レフ保有者が多く、これを利用した観 測装置を作成
 - 高感度ビデオカメラ「流星号2」計画
 - 流星号の目視による画像解析が追いつかず動体 検出が必要になった
 - 観測装置の作成が活動の中心
 - 現在は完成し、TV観測とその解析に移行

流星号計画

- 左上/左下はブロック図と構造図です
 - USB給電で駆動し、ハードディスクの三相モーターをスピコンでドライブします
 - Arduinoで定周期パルスを出力し羽根を1分間に1200回転させています

流星号2計画結線図

IMX225 color sensor and Lens Spec.

Image size : 16.1mm diagonal Number of pixel : 4112(H) x 2176(V) Pixel size : 3.45μ m(H) x 3.45μ m(V) Sens : 1146mV @ 3200K 706 cd/m² 1/30s

Lens : f=8mm F1.2

流星号2 設置例と動作画面

- 15台が完成し(2017年末の時点で)6台が 観測中です(6名中4名が定年過ぎ)
 - 材料費は1台5000円でした
- 各自が様々な所に設置し監視カメラソフト (CONTACAM)を使って夜空で動くものを監 視し録画しています
 - 右がCONTACAMの画面です
- 解析はUA2を使っています
 - 今まで天体写真しか撮っていなかった人たちが各自でUA2を扱って解析を行っています

監視ソフト 👉 Contaware.com

OEM Doution

57

×

v

\$

✓ Sa

🗢 sec

frames

		OLM DEFICE
👍 Contaware.com	Search Search	General Snapshot Movement Detection Detection OFF
Home ContaCam FreeVimager Download Donate Screenshots / Demos Manual	& FAQs Support	Store 2 sec of frames before detection begin Store 2 sec of frames after detection end
Video Surveillance and Graphics Software This is the software portal of ContaCam and FreeVimager. ContaCam is a FreeVideo Surveillance software an Windows. FreeVimager is a Free Image Viewer and Editor for Windows. The focus of our open source produ that the offered software work well and do what's said.	nd Live Webcam solution for tts is stability and reliability. We want	Detection Sensitivity Detection Zones Size Small
All the programs are written for Windows operating systems, there are no plans to port them to other system Wine on Linux and with Wine on Mac. If you are satisfied and want to help improve or motivate the development you can Donate to the Contawa	s or to mobile phones, but they work with ire.com projects.	Detection Limits
 ContaCam 7.5.0 with RTSP support in the provided in t	Capture - Network	Drop detections shorter than Split detection files longer than Detection Scheduling Detection always enabled (scheduler is off) From 20:41:32 To 20:41:32 V Su V Mo V Tu V We V Th V Fr

- ContacamはFreeの監視カメラソフトです。動体があると録画します。 ٠
- 設定は多いのですが Movement Detection タブ が最も重要です •
 - Detection Limits を Osec にすると僅かな動きも録画します

- Detection Zones Size は Small にしないと流星を検出しません _
- Detection Sensitivityを観測地の空の明るさなどに合わせて観測しながら微調整します
- 動くものはすべて録画します、雲・雷・飛行機・人工衛星・虫・鳥・流星 etc ٠

観測ネットワーク

- 近距離になってしまいましたが観測ネットワークが出来ています
 - 小田原(1)、平塚(3)、茅ヶ崎(2)
 - 南のベランダに設置される事から、大島上空100kmにカメラを向けています
 - カメラの画角は33x22度と狭いものですが、3等まで観測出来ています

_ID	_count	_scount	_s%
akiyama_	326	40	12.3
hagiwara_	204	10	4.9
nagai_	394	51	12.9
Okazawa_01	269	38	14.1
shimizu_	410	56	13.7
yokozeki_	187	13	7

- 2017年5月から小田原と茅ヶ崎の2箇所で観測を開始し、 2017年10月から6箇所になりました
- SPOが多かったのですが12月のふたご群を多数検出出来、 上図で目立った軌道はふたご群のものです

分光観測 を始めました

Resolution = -0.000000146×X² + 0.0006×X + 4.5015 (Å /pixel)

- ブレーズド回折格子(300gr)を用いた対物式分光器です
- CANON EOS Kiss X4,f=28mm ISO6400 3秒露出でインターバル4秒の固定撮影です
- TV観測と同方向に向けてCONATCAMで動体検出された時刻の画像だけをチェックしています
- ・ 画像のX軸によって分散の量が異なり、0次のXピクセル値から波長分解能を決めています

- 解析にはRSpec(Real-time Spectroscopy)を用いています
- ・ 輝線の波長を測定しました
 - $5119 \pm 70 \text{ Å}$ (Mg: 518nm)
 - 5800±80Å (Na: 589nm)
 - 誤差は波長分解能は1%程度、ピクセル値の測定は 最大で4ピクセル程度(4x分解能)、この合計を誤差の 目安にしています
 - 同時流星でしたので軌道が求まり、散在流星でした

11/17 00:40JSTに出現した流星の スペクトル解析

平塚市博物館 天体観察会 流星分科会 永井和男

- 流星はオリオン座の西を北から南に流れました
- 時刻は2017年11月17日00時40分50秒です

- ・ 平塚市博物館の天体観察会では流星分科会によって大島 上空100kmを監視しています
- この流星は茅ケ崎と小田原の同時流星でした

• 解析の結果、流星はほぼ鉛直に地球に衝突していました

_a	_q	_e	_p	_peri	_node	_incl	_stream
2.239003	0.144222	0.935587	3.351636	140.095108	54.282215	0.315326	_spo

• この様な軌道の散在流星でした

- ブレーズド回折格子(300gr)を用いた対物式分光器です
- CANON EOS Kiss X4,f=28mm ISO6400 3秒露出でインターバル 4秒の固定撮影です
- TV観測と同方向に向けて動体検出された時刻の画像を チェックする

ブレーズド回折格子

図3 ブレーズド回折格子

・回折格子の溝の角度を斜めにすることで、 ほとんどの光の成分を一つの方向に回折 させることができる。

・すべての波長の光を100%曲げるのは難しく、 一部は他の次数で曲がってしまう。

- ブレーズド回折格子は、特殊な回折格子です。エシェレット格子とも呼ばれます。
- 任意の回折次数において最大回折効率 が得られるように最適化されています。
- 要するに最大屈折を望む回折次数に集中され、他の次数は最小となっています。
- 今回の回折格子は1次が最大となる物 を使っています。

軸別の波長分解能

- X軸を関数とした波長分解能は二次関数にフィットできた
 - この二次関数からのズレ量の標準偏差を測定誤差と定義出来る
 - 図中の二次関数はエクセルの近似式を用いたもの
- Y軸方向は波長分解能に相関が無かった

X軸を関数とする波長分解能

- エクセルの近似式から、よりフィットする関数を求めた
- Resolution = -0.000000146 × X² + 0.0006 × X + 4.5015 (Å/pixel)
- 標準偏差は0.04(Å/pixel)となった

2017/11/17 00:40JST に出現した流星

トリミングしてあります

- 4.932 Å / Pixとして二つの輝線の波長を測定した
 - -5119 ± 70 Å (Mg: 518nm)
 - -5800 ± 80 Å (Na: 589nm)
- 誤差は波長分解能は1%程度、測定は最大で4ピクセル 程度(4x分解能)、この合計を誤差とします

おわり

- まだまだ始めたばかりです勉強不足ですが観測は続けます
- DSLRでは感度不足なので検出数が少ないのも課題です

M20180116_012508

2018年1月16日 1時25分8秒に出現した流 星のSpectrumが写りました。 アルファルドの西側に写っています。

二つの輝線の波長は(分解能を5.5Å/Pixと すると) 5170Å(Mg)と 5925Å(Na)となりま した。前回と同じでしたのでMgとNaが多い ようです。 司馬氏によると 10 月 26 から 27 日にかけて、太陽黄径で 213.29°から 213.97°の範囲で 4 個の流 星が集中した輻射点を示しているとのことです。 α 3 3 0°、 δ + 2°付近、Vg=9km/s 程度であった。 別の下田氏が非常にもろい感じの低速流星がありましたとのことでした。この流星は、永続痕もカラーで長く撮影され ていました。こちらも似た軌道は、結構あったので報告する。

localtime	sol	_amag	_ra_o	_dc_o	_ra_t	_dc_t	_vo	_vg	_a	_q	_e	_p	_peri	_node	_incl	_st	Qo	_dur	_H1	_H2
_20141024_184519	210.70	-1.5	329.40	10.20	329.90	4.10	13.40	8.90	2.40	0.97	0.60		201.10	210.70	3.60	Ν			94.00	73.80
_20161025_021257	211.50	1.5	351.10	16.10	331.70	2.50	13.20	7.70	2.00	0.97	0.51		201.30	211.50	2.80	Ν			79.60	72.30
_20171025_215451	212.06	-1.6	344.01	11.90	322.66	-12.47	10.01			0.98				212.06		Ν	5.77	2.04	58.13	40.37
_20171026_210904	213.03	-0.7	338.25	8.45	331.51	0.21	13.32	7.47	1.97	0.97	0.51	2.77	199.74	213.02	2.28	Ν	4.21	0.94	86.86	76.27
_20171026_212158	213.04	0.9	349.15	11.47	344.71	4.50	13.42	7.56	1.75	0.95	0.45	2.31	209.74	213.03	2.17	Ν	1.85	0.6	75.69	68.41
_20171026_235147	213.14	-2.4	341.75	11.03	326.86	0.45	13.11	7.41	2.02	0.98	0.51	2.86	196.89	213.14	2.62	Ν	12.33	2.55	96.14	76.41
_20171027_001318	213.16	0.6	340.18	10.88	324.72	0.07	13.49	8.12	2.30	0.98	0.57	3.50	195.48	213.15	2.88	Ν	11.91	1.72	91.65	80.83
_20171027_1.5011 UTC	213.55		339.12	8.40	337.13	3.08		8.35	2.12		0.55		203.66	213.55	2.67	Ν				
_20171027_195407	213.97	-0.9	333.05	9.82	329.33	0.71	12.94	6.61	1.78	0.98	0.45	2.38	197.98	213.97	2.27	Ν	4.5	0.91	88.92	78.56
_20171029_211251	216.03	0.9	360.89	19.05	359.42	8.27	11.43	2.31	1.10	0.96	0.12	1.16	222.04	216.01	0.57	Ν	0.57	0.12	72.96	71.65
_20171031_230944	218.11	0.9	349.02	7.02	338.86	-1.31	13.78	8.47	2.31	0.97	0.58	3.52	200.51	218.10	1.60	Ν	1.46	0.17	77.32	75.71
_20171101_011819	218.20	2.3	375.07	20.86	358.75	11.38	12.45	6.06	1.38	0.94	0.32	1.62	218.79	218.19	1.97	Ν	1.28	0.3	79.92	77.28
_20171101_201325	218.98	1.2	348.10	8.47	346.14	0.95	13.73	8.00	1.98	0.96	0.52	2.80	205.15	218.98	1.40	Ν	6.88	1.2	84.96	70.42
_20171101_222722	219.08	0.5	367.88	14.88	363.37	9.88	14.43	9.28	1.77	0.91	0.48	2.35	221.62	219.08	2.05	Ν	3.87	0.63	74.36	66.12
北群の平均	214.61	0.13	347.64	12.04	338.93	2.31	12.98	7.40	1.91	0.96	0.47	2.53	205.69	214.61	2.22		4.97	1.02	81.58	71.39
母天体 2010UB									2.14	0.99	0.52		199.50	215.10	3.40					
SonotaCoNet									1.90	0.98	0.50		196.30	213.10	2.60					
_20171023_235606	210.15	-0.6	358.82	-1.32	349.88	-10.06	14.36	9.38	2.18	0.94	0.57	3.21	31.51	30.17	1.35	S	2.21	0.58	76.00	70.43
_20171026_022014	212.25	1.9	368.96	4.22	353.01	-7.84	13.62	8.37	1.86	0.94	0.49	2.53	32.79	32.26	1.04	S	1.87	0.37	78.05	76.12
_20171026_194646	212.97	2.7	339.75	-1.73	338.73	-9.66	14.83	9.72	2.92	0.97	0.67	5.00	21.96	33.06	0.17	S	1.21	0.63	86.29	78.92
_20171101_225720	219.10	0.5	350.99	-10.46	338.12	-24.12	13.39	7.78	2.20	0.98	0.55	3.26	14.04	39.10	2.89	S	9.24	0.79	85.06	79.62
南群の平均	213.62	1.12	354.63	-2.32	344.93	-12.92	14.05	8.81	2.29	0.96	0.57	3.50	25.07	33.65	1.36		3.63	0.59	81.35	76.27

MSS 資料 2 2018年1月19日の突発群についての考察

関口孝志

下田氏によると1月19日に大塚勝仁氏から、spaceweatherの火球軌道のページで流星群活動の可能 性について連絡があったとのこと。確かに軌道に集中が認められることから、この日 NASA all-sky cameras で撮影された21個の火球について、放射点をプロットし、 α 185、 δ 0 付近に顕著な集中が 見られた。該当する火球は8個、平均値は α 185.2、 δ +0.4、Vo=68.2km/s であった。対応しそうな既 知の流星群としては、PVI (January pi Virginids)がある。ただし、大塚氏は「これだけの高速で輻射 点位置が10度近くもずれるとなると、おとめ座 π 群との関連の可能性は低いと言う。なお、SonotaCo ネットでは18日前後天候不順でこの群と同一の同時流星は1個のみでした。似た軌道は、結構あった ので報告する。

6	20180113_011232	292.2	-0.7	187.0	-1.6	71.4	-29.6	0.80	1.03	0.0	230.57	292.16	177.54	8.20	0.25	112.55	104.17
7	_20180113_020258	292.2	-3.4	185.8	0.0	70.2	30.5	0.75	0.98	168.7	238.17	292.20	175.63	21.67	1.10	132.20	84.36
8	_20180113_021941	292.2	-1.5	186.7	-0.5	74.7	-2.6	0.82	1.31	0.0	225.54	292.21	176.06	0.99	0.18	1 09.63	99.83
9	_20180113_035031	292.3	-4.3	187.6	0.4	71.9	-9.7	0.80	1.08	0.0	229.67	292.27	173.85	4.04	0.33	110.97	92.13
10	_20180118_231231	298.2	-0.1	184.6	-0.8	68.0	22.6	0.57	0.97	107.5	261.88	298.19	177.68	2.72	0.22	100.11	96.41
11																	
12	北群平均	292.2	-1.2	186.6	-0.8	71.0	-1.5	0.78	1.03	105.7	233.2	292.2	176.4	6.9	0.4	112.6	97.6
13																	
14	_20180111_044621	290.3	-0.9	186.7	-3.9	65.2	1.8	0.77	0.57	2.4	66.04	110.27	178.23	1.80	0.12	97.83	91.67
15	_20180114_050923	293.3	-1.5	186.1	-4.2	66.8	2.8	0.72	0.75	4.8	68.08	113.35	177.21	1.20	0.10	104.90	99.71
16	_20180115_023343	294.3	0.0	187.0	-3.6	69.0	6.3	0.75	0.88	15.9	60.99	114.25	179.02	3.80	0.19	112.08	103.02
17																	
18	南群平均	292.6	-0.8	186.6	-3.9	67.0	3.7	0.7	0.7	7.7	65.0	112.6	178.2	2.3	0.1	104.9	98.1
	The second s	The second s															

放射点位置の数値計算1

長沢 工

2017年7月2日

1 流星経路が平面上に得られている場合

ここでは、平面上に流星経路が得られ、それぞれの流星が直線で表わされ ている場合を考える。適当な直交座標系 (x, y) において、ある流星の発光点 Pの座標が (x_p, y_p) , 消滅点 Qの座標が (x_q, y_q) であるとき、流星直線の傾 きを m, y 軸上の切片を n とすると、m, n は、

$$m = \frac{y_q - y_p}{x_q - x_p},$$

$$n = \frac{x_q y_p - x_p y_q}{x_q - x_p},$$
(1)

で計算され、流星直線の方程式は、

$$y = mx + n, (2)$$

で表わされる。また、この流星の経路長 γは、

$$\gamma = \sqrt{(x_q - x_p)^2 + (y_q - y_p)^2},\tag{3}$$

で計算できる。

いま流星経路が k 個あり、それらの方程式が、

$$y = m_i x + n_i, (i = 1, 2, \cdots, k)$$
 (4)

で与えられているとき、もっとも確からしい放射点の位置はどのように計算 すればよいか。 単純に考えるなら、最小二乗法を使い、それぞれの直線からの距離の二乗 和が最小になる点を求めればよい。任意の点 (x_0, y_0) と直線 (4) との距離 r_i のの二乗は、

$$r_{i}^{2} = \frac{(m_{i}x_{0} - y_{0} + n_{i})^{2}}{m_{i}^{2} + 1}$$

= $\frac{m_{i}^{2}x_{0}^{2} - 2m_{i}x_{0}y_{0} + y_{0}^{2} + 2m_{i}n_{i}x_{0} - 2n_{i}y_{0} + n_{i}^{2}}{m_{i}^{2} + 1}$, (5)

である。したがって k 個のこの和 R は、

$$R = \sum_{i=1}^{k} \frac{(m_i x_0 - y_0 + n_i)^2}{m_i^2 + 1}$$

= $x_0^2 \Sigma \frac{m_i^2}{m_i^2 + 1} - 2x_0 y_0 \Sigma \frac{m_i}{m_i^2 + 1} + y_0^2 \Sigma \frac{1}{m_i^2 + 1}$
 $+ 2x_0 \Sigma \frac{m_i n_i}{m_i^2 + 1} - 2y_0 \Sigma \frac{n_i}{m_i^2 + 1} + \Sigma \frac{n_i^2}{m_i^2 + 1},$ (6)

である。わかりやすいように、

$$a = \Sigma \frac{m_i^2}{m_i^2 + 1}, \quad d = \Sigma \frac{m_i n_i}{m_i^2 + 1},$$

$$b = \Sigma \frac{m_i}{m_i^2 + 1}, \quad e = \Sigma \frac{n_i}{m_i^2 + 1},$$

$$c = \Sigma \frac{1}{m_i^2 + 1}, \quad f = \Sigma \frac{n_i^2}{m_i^2 + 1},$$
(7)

と書くことにすると、

$$R = ax_0^2 - 2bx_0y_0 + cy_0^2 + 2dx_0 - 2ey_0 + f,$$
(8)

である。この R が最小値をとる必要条件は、

$$\frac{\partial R}{\partial x_0} = 0, \quad \frac{\partial R}{\partial y_0} = 0, \tag{9}$$

である。この計算を実行すると、

$$ax_0 - by_0 + d = 0, \quad -bx_0 + cy_0 - e = 0, \tag{10}$$

の関係が得られる。これは簡単に解くことができて、

$$x_0 = \frac{dc - be}{b^2 - ac}, \quad y_0 = \frac{bd - ae}{b^2 - ac},$$
 (11)

が得られる。fの計算は不要である。こうして、それぞれの流星直線からの 距離の二乗和が最小になる点 (x_0, y_0)が決定できる。

図 1: 流星を模した直線群

ここで述べたのは、それぞれの流星経路の重みをすべて等しいとした場合 の計算である。経路長の長い流星の方が放射点を決めるのに貢献度が高いと か、放射点に近い方が影響が大きいなどと考える人もあるかもしれない。そ の考えに対しては、それに応じた重みを与えて上記の計算を行なえばよい。

計算例

ここでは、図1に示した6個の流星の放射点を計算してみよう。これらは 実際の流星の位置を測ったものではなく、単なるモデルであり、それぞれの 流星には番号が振ってある。測定位置からの計算手順は表1に示してある。

			/	F121 4 /01			
	1	2	3	4	5	6	合計
x_p	2.00	3.60	6.00	5.00	4.00	2.00	
y_p	-0.90	-0.62	-0.80	1.50	2.14	1.00	
x_q	0.00	5.00	8.75	7.50	6.00	-1.00	
y_q	-3.50	-3.00	-3.00	2.15	3.66	1.90	
m	1.30	-1.70	-0.80	0.26	0.76	-0.30	-0.48
n	-3.50	5.50	4.00	0.20	-0.90	1.60	6.90
m^2	1.6900	2.8900	0.6400	0.0676	0.5776	0.0900	5.9552
mn	-4.550	-9.350	-3.200	0.052	-0.648	-0.480	-18.212
n^2	12.25	30.25	16.00	0.04	0.81	2.56	61.91
$\frac{m^2}{m^2+1}$	0.6283	0.7429	0.3902	0.0633	0.3661	0.0826	a = 2.2734
$\frac{m}{m^2+1}$	0.4833	-0.4370	-0.4878	0.2435	0.4817	-0.2752	b = -0.085
$\frac{1}{m^2+1}$	0.3717	0.2571	0.6098	0.9367	0.6339	0.9174	c = 3.7266
$\frac{mn}{m^2+1}$	-0.6915	-2.4036	-1.9512	0.0487	-0.4336	-0.4474	d = -6.8715
$\frac{n}{m^2+1}$	-1.3011	1.4139	2.4390	0.1873	-0.5705	1.4679	e = 3.6365

表1 放射点の計算手順

a,b,c,d,e がわかったから、(11) 式を使って、ただちに、

$$\begin{aligned}
x_0 &= 3.026, \\
y_0 &= 0.983,
\end{aligned} \tag{12}$$

を計算できる。この点はすでに図1に示してある。

2 直線と点の置き換え

これから述べることは、通常の思考方法と大きく異なっているので、ちょっと解りにくいかもしれない。それは直線と点とを置き換える方法である。

ある平面上に直線があったとする。その直線を決めるには、二つの数値が 必要である。たとえば、その直線が、

$$y = mx + n$$
,

であったとすれば、*m*,*n*の二つの数値がこの直線を決定する。このとき、この直線を点(*m*,*n*)に置き換えるのである。

直線を点に置き換えると同時に、点 (a, b) は直線、

$$y = ax + b$$
,

に置き換える。すると、どんなことが起こるか。

二つの直線をそれぞれ点に置き換えたとする。すると、初めに二つの直線 の交点だった点が、こんどは置き換わった二つの点を結ぶ直線になる。たと えば、

$$y = x + 1, \qquad y = -x + 3,$$

の二つの直線を考える。すぐわかるように、この交点は (1,2) である。ここ で置き換えをすると、

$$y = x+1,$$
 は点 (1,1)になる。
 $y = -x+3,$ は点 (-1,3)になる。

この二つの点を結ぶ直線は y = -x + 2 である。つまり、(1,2) の交点がこの 直線に置き換わったと考えることができる。このとき、xの係数の符号の正 負が代わるから、注意が必要である。

この考えを進めよう。仮に三本の直線が一点に交わっていたとしたら、そ れらの直線を点に置き換えると、交点はその三点を通る直線に置き換わる。 群流星の経路のように、ほぼ一点に交わる何本もの直線を点に置き換えたな ら、それらの点はほぼ一直線上に並ぶ。その直線は、放射点を置き換えた直 線に相当する。

何本もの流星直線がたくさんの交点を作っているところで、ただ一点の放 射点を決めるよりも、おおむね直線上に並んでいるたくさんの点に接近して 通る一本の直線を決める方がずっと決めやすい。その直線を元の点に戻せば、 それが放射点になる。こうした方法で放射点を決めることもできる。

このときは、それぞれの点から直線に下ろした垂線の長さの二乗和が最小 になる直線を求めればよい。見通しが良さそうな方法だけれど。計算がそう 簡単になるわけではない。ここでは、単に計算の手順だけを示しておく。求 める直線の方程式を

$$y = ax + b, \tag{13}$$

とする。ただし、このa,bは、1節で扱ったa,bとはまったく無関係のものである。そしてまず、

$$u = k\Sigma m_i n_i - \Sigma m_i \Sigma n_i,$$

$$v = k(\Sigma m_i^2 - \Sigma n_i^2) - (\Sigma m_i)^2 + (\Sigma n_i)^2,$$
(14)

でu, vを計算する。kは流星の数である。このとき放射点 (x_0, y_0) は、

$$\begin{aligned}
 x_0 &= \frac{v \pm \sqrt{v^2 + u^2}}{2u}, \\
 y_0 &= \frac{1}{k} (\Sigma n_i + x_0 \Sigma m_i),
 \end{aligned}
 \tag{15}$$

で計算できる。複号があるので x₀ に二つの値が出るが、正しいのは一方だけである。垂線の長さの二乗和を直接に計算しても、図を描いても、どちらが正しいかは容易に判別できる。なお、こうして求めた放射点位置は前の節で計算した放射点位置と近いものにはなるが、厳密に同じにはならない。

計算例

 $\Sigma m_i, \Sigma n_i, \Sigma m_i^2, \Sigma m_i n_i, \Sigma n_i^2$ は、すでに表1に計算してある。k = 6であり、

$$\Sigma m_i = -0.48, \quad \Sigma m_i^2 = 5.9552,$$

 $\Sigma n_i = 6.90, \quad \Sigma n_i^2 = 61.91,$
 $\Sigma m_i n_i = -18.212$

である。これらを使って (14) 式から、

$$u = 105.96,$$

 $v = -288.3492,$ (16)

図 2: 流星を表わす点群に接近する直線

が計算できる。そして (15) 式により、

(1) a = -3.049, b = 0.906,(2) a = 0.328, b = 1.176,

の二組の解が計算できる。垂線の長さの二乗和は、(1) に対しては 0.125、(2) に対しては 59.767 となるので、(1) が真の解であることは明らかである。その状況は図 2 からもすぐにわかる。したがって放射点の位置は、

$$x_0 = 3.049,$$

 $y_0 = 0.906,$ (17)

になる

放射点位置の数値計算2

長沢 工

2017年10月1日

1 測定座標から天球座標への換算

前回に述べたのは、流星経路が平面上に得られている場合であった。しかし、現実には流星は天球上に出現する。放射点の位置は測定した (*x*, *y*) ではなく、赤経、赤緯で表わしたい。それにはどうすればよいか。

天文学では、天球上の点は一般に赤経、赤緯 (α , δ) で示されることが多い。 しかし、さまざまな計算をするのには、赤経、赤緯よりも、方向余弦 (l,m,n) を使う方が便利なことが多い。方向余弦 (l,m,n) と赤経、赤緯 (α , δ) との関 係は、

$$l = \cos \delta \cos \alpha,$$

$$m = \cos \delta \sin \alpha,$$
 (1)

$$n = \sin \delta.$$

であり、また、

à

$$\tan \alpha = \frac{m}{l}, (l > 0 \ \mathfrak{C}\alpha \mathfrak{l} \ \mathfrak{k} \ 1 \ \mathfrak{s} \ \mathfrak{k} \ \mathfrak{k} \ \mathfrak{k},$$

sin $\delta = n,$ (2)

であるから、容易に換算できる。赤経、赤緯は二量であるが、方向余弦は三 量である。それは、

$$l^2 + m^2 + n^2 = 1, (3)$$

の関係が常に成り立っているからである。ここでは、方向余弦による計算を 示すことにする。

まず、写真などで流星経路などが得られているとき、その測定点 (*x*, *y*) と、 天球座標の (*l*, *m*, *n*) との関係を定める必要がある。これにはすでに確立した 手順があり、たとえば、アストラルシリーズの「流星 II(恒星社厚生閣,1984)」 に、大西洋氏の記述がある。ただし、この本は現在は簡単には手に入らない かもしれないので、ごく簡単にその手順を述べておく。多少煩雑な関係では あるが、プログラムを作ってパソコンで計算すれば、簡単に処理できる。

流星経路が写真撮影されたものであるとし、そこには恒星像も同時に写っているものとする。そのとき、流星像の位置を測定すると同時に何個かの恒星の位置も測っておく。なるべく光軸に近いところにひとつ(中心星)、そのほかにいくつかの比較星を選んで測定する。比較星は3個以上必要である。ここでは中心星の位置を (x_0, y_0) とし、比較星の位置を $(x_i, y_i)(i = 1, 2, \dots, k)$ とする。また、中心星の赤経、赤緯を(A, D)、方向余弦を(L, M, N)とし、k個の比較星の方向余弦をそれぞれ $(l_i, m_i, n_i)(i = 1, 2, \dots, k)$ とする。

ここで。比較星 $(i = 1, 2, \dots, k)$ に対し、つぎの式で (ξ_i, η_i) を計算する。

$$\begin{pmatrix} 1\\ \xi_i\\ \eta_i \end{pmatrix} = \frac{1}{Ll_i + Mm_i + Nn_i} \begin{pmatrix} \cos D & 0 & \sin D\\ 0 & 1 & 0\\ -\sin D & 0 & \cos D \end{pmatrix} \\ \times \begin{pmatrix} \cos A & \sin A & 0\\ -\sin A & \cos A & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} l_i\\ m_i\\ n_i \end{pmatrix}$$
(4)

この (ξ_i, η_i) を、比較星 I の標準座標という。

つぎに、カメラの焦点距離を s として、比較星に対し

$$X_i = \frac{x_i - x_0}{s},$$

$$Y_i = \frac{y_i - y_0}{s},$$
(5)

を計算する。この (X_i, Y_i) を比較星の**測定座標**という。s にそれほどの精度 は必要ないが、一度決めたら、その値を使い続けなければならない。標準座 標は天球座標に関係する量であり、測定座標は (x, y) の測定値に関係する量

 $\mathbf{2}$

である。この両者を関連付けることで、測定座標を標準座標に換算すること ができる。それには、以下の手順が必要になる。

.

それぞれの比較星に対する測定座標と標準座標を求めたら、まず、つぎの 11 個の数値を計算する。

$$h_{11} = \sum_{i=1}^{k} X_i^2 = X_1^2 + X_2^2 + \dots + X_k^2,$$

$$h_{12} = h_{21} = \sum_{i=1}^{k} X_i Y_i = X_1 Y_1 + X_2 Y_2 + \dots + X_k Y_k,$$

$$h_{22} = \sum_{i=1}^{k} Y_i^2 = Y_1^2 + Y_2^2 + \dots + Y_k^2,$$

$$h_{13} = h_{31} = \sum_{i=1}^{k} X_i = X_1 + X_2 + \dots + X_k,$$

$$h_{23} = h_{32} = \sum_{i=1}^{k} Y_i = Y_1 + Y_2 + \dots + Y_k,$$

$$h_{14} = \sum_{i=1}^{k} \xi_i X_i = \xi_1 X_1 + \xi_2 X_2 + \dots + \xi_k X_k,$$

$$h_{14} = \sum_{i=1}^{k} \xi_i Y_i = \xi_1 Y_1 + \xi_2 Y_2 + \dots + \xi_k Y_k,$$

$$h_{34} = \sum_{i=1}^{k} \xi_i = \xi_1 + \xi_2 + \dots + \xi_k,$$

$$h_{15} = \sum_{i=1}^{k} \eta_i X_i = \eta_1 X_1 + \eta_2 X_2 + \dots + \eta_k X_k,$$

$$h_{25} = \sum_{i=1}^{k} \eta_i Y_i = \eta_1 + \eta_2 + \dots + \eta_k,$$

これらの値を使って、a,b,c,d,e,f を未知数とする、つぎの二組の三元連立

3
方程式を作る、それらは、

$$h_{11}a + h_{12}b + h_{13}c = h_{14},$$

$$h_{21}a + h_{22}b + h_{23}c = h_{24},$$

$$h_{31}a + h_{32}b + kc = h_{34},$$
(7)

および、

$$h_{11}d + h_{12}e + h_{13}f = h_{15},$$

$$h_{21}d + h_{22}e + h_{23}f = h_{25},$$

$$h_{31}d + h_{32}e + kf = h_{35},$$

(8)

である。この二組の方程式を解くことで、*a*,*b*,*c*,*d*,*e*,*f*の六つの数値が得られる。これらから、標準座標と測定座標との間に、一般的に、

$$\xi = aX + bY + c,$$

$$\eta = dX + eY + f,$$
(9)

の関係が成立する。つまり、この式で測定座標を標準座標に換算できる。そして、

$$\begin{pmatrix} l_i \\ m_i \\ n_i \end{pmatrix} = \begin{pmatrix} \cos A & -\sin A & 0 \\ \sin A & \cos A & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \times \begin{pmatrix} \cos D & 0 & -\sin D \\ 0 & 1 & 0 \\ \sin D & 0 & \cos D \end{pmatrix} \begin{pmatrix} 1/\sqrt{\xi_i^2 + \eta_i^2 + 1} \\ \xi_i/\sqrt{\xi_i^2 + \eta_i^2 + 1} \\ \eta_i/\sqrt{\xi_i^2 + \eta_i^2 + 1} \end{pmatrix}, \quad (10)$$

の関係が成立している。(4) 式で測定点 (x, y) に対する標準座標 (ξ, η) が計 算できるから、(10) 式で、その測定点の天球座標 (l, m, n) を計算できる。

計算例

ここでは、「ふたご座」と「おうし座」にまたがる7個の星から、(x, y)座標と天球座標との関係を求めてみる。中心星を δ Gem $(A = 110^{\circ}.0304, D = 21^{\circ}.9822)$ にとり、残る6個の比較星の中心星に対する測定位置 $(x_i - x_0, y_i - y_i)$

 y_0)から計算をする。測定の単位は cm であり、焦点距離は s = 20 cm として いる。このとき、それぞれの比較星に対する計算の途中経過は、表 1 のよう になる。都合上、表を二つに分けて示しているのでちょっと見にくいが、お 許しを請う。

	表	 1 整約の途 		
	$\beta~{ m Gem}$	θ Gem	$\gamma~{ m Gem}$	$\mu~{\rm Gem}$
$lpha_i$	$116^{\circ}.32875$	103°.19708	99°.42792	95°.74000
δ_i	$28^{\circ}.02611$	$33^{\circ}.96111$	$16^{\circ}.39917$	$22^{\circ}.51361$
l_i	-0.39151	-0.18936	-0.15714	-0.09239
m_i	0.79116	0.80751	0.94636	0.91916
n_i	0.46987	0.55863	0.28233	0.38290
ξ_i	0.09787	-0.10415	-0.18010	-0.23424
η_i	0.10842	0.21563	-0.09301	0.02052
$x_i - x_0$	-0.05	3.90	1.34	3.37
$y_i - y_0$	2.60	1.72	-3.41	-2.45
X_i	-0.0025	0.195	0.0670	0.1685
Y_i	0.1300	0.086	-0.1705	-0.1255
X_i^2	0.000006	0.038025	0.004489	0.028392
$X_i Y_i$	-0.000325	0.016770	-0.011424	-0.020641
Y_i^2	0.016900	0.007396	0.029070	0.015006
$X_i \xi_i$	-0.000245	-0.019783	-0.012067	-0.039469
$Y_i \xi_i$	0.012723	-0.008725	0.030707	0.028694
$X_i\eta_i$	-0.000271	0.042048	-0.006232	0.003458
$Y_i\eta_i$	0.014095	0.018544	0.015858	-0.002514

ここから、(7),(8)の方程式は、

0.344874a - 0.160164b + 1.160c = -0.405451,-0.160164a + 0.155388b - 0.485c = 0.247526, (11) 1.160a - 0.485b + 6c = -1.32618,

 $\mathbf{5}$

および、

$$0.344874d - 0.160164e + 1.160f = 0.118641,$$

-0.160164d + 0.155388e - 0.485f = 0.012851, (12)
1.160d - 0.485e + 6f = 0.44634,

となる。

	表 1	(つづき)	
	ζ Aur	β Aur	合計
α_i	84°.41083	81°.57292	
δ_i	$21^{\circ}.14250$	$28^{\circ}.60750$	
l_i	0.09084	0.12866	
m_i	0.92825	0.86844	
n_i	0.36069	0.47881	
ξ_i	-0.44082	-0.46744	-1.32618
η_i	0.02141	0.17329	0.44634
$x_i - x_0$	6.22	8.42	
$y_i - y_0$	-4.95	-3.21	
X_i	0.3110	0.4210	1.160
Y_i	-0.2475	-0.1605	-0.485
X_i^2	0.096721	0.117241	0.344874
$X_i Y_i$	-0.076973	-0.067571	-0.160164
Y_i^2	0.061256	0.025460	0.155388
$X_i \xi_i$	-0.137095	-0.196792	-0.405451
$Y_i \xi_i$	0.109103	0.075024	0.247526
$X_i\eta_i$	0.006683	0.072955	0.118641
$Y_i\eta_i$	-0.005319	-0.027813	0.012851

上記の方程式を解いて、

$$a = -0.833049, \quad d = 0.729613,$$

$$b = 0.731721, \quad e = 0.838107,$$

$$c = -0.000826, \quad f = 0.001078,$$

(13)

が得られる。つまり、 (ξ, η) と(X, Y)の間には、

$$\xi = -0.833049X + 0.731721Y - 0.000826,$$

$$\eta = 0.729613X + 0.838107Y + 0.001078,$$
(14)

の関係が成り立っている。これにより測定座標 (X, Y) から計算された標準 座標 (ξ, η) は、さらに (10) 式によって天球座標 (l, m, n) に換算できる。

図 1: 流星に対する比較星の位置

いま、前回計算したモデル流星の位置が、測定したこれらの中心星、比較 星の位置と重なっていることにする。これは図1のような関係になる。この

とき、最初に計算した放射点の位置 (x=3.026,y=0.983) を、天球座標に換算 してみよう。

焦点距離 s = 20cm であるから、まず測定座標 (X, Y) は、

$$X = x/20 = 0.15130,$$

$$Y = y/20 = 0.04915,$$
 (15)

である。したがって(14)式により、

$$\xi = -0.833049X + 0.731721Y - 0.000826 = -0.090902,$$

$$\eta = 0.729613X + 0.838107Y + 0.001078 = 0.152661,$$
 (16)

である。ここから、

$$1/\sqrt{\xi^{2} + \eta^{2} + 1} = 0.984580,$$

$$\xi/\sqrt{\xi^{2} + \eta^{2} + 1} = -0.089500,$$

$$\eta/\sqrt{\xi^{2} + \eta^{2} + 1} = 0.150307,$$

(17)

となる。中心星の位置は ($A = 110^{\circ}.0304, D = 21^{\circ}.9822$) であるから、(10) 式によって、

$$l = -0.209362,$$

$$m = 0.835570,$$
 (18)

$$n = 0.507927,$$

が計算できる。これで天球座標が得られた。もしこれを赤経、赤緯にするな ら、(2)式によって、

$$\tan \alpha = \frac{m}{l} = \frac{0.835570}{-0.209362} = -3.99103,$$

$$\sin \delta = 0.507927,$$
(19)

であり、放射点の位置として、

$$\alpha = 104^{\circ}.067,$$

 $\delta = 30^{\circ}.526,$
(20)

が求められる。

2 天球座標から放射点を定める

ここでは、天球座標から放射点を決める手順を考える。流星は、一般に天球上の大円に沿って出現すると考えられる。発光点 P の方向余弦が (l_p, m_p, n_p) , 消滅点 Q の方向余弦が (l_q, m_q, n_q) であるとき、この流星の経路長 γ は、

$$\sin \gamma = \sqrt{(m_p n_q - n_q m_p)^2 + (n_p l_q - l_p n_q)^2 + (l_p m_q - m_p l_q)^2}, \cos \gamma = l_p l_q + m_p m_q + n_p n_q,$$
(21)

で表わされる。

球面上の大円に対しては、その極が存在する。極とは、大円上のどの点か らも中心角が 90° である点のことである。たとえば、地球を球と考えたとき、 赤道大円に対する極は北極と南極になる。大円に対する極はいつも二つ存在 する。

流星経路大円 PQ に対する極の方向余弦 (l,m,n) は、

$$l = \pm \frac{1}{\sin \gamma} (m_p n_q - n_p m_q),$$

$$m = \pm \frac{1}{\sin \gamma} (n_p l_q - l_p n_q),$$

$$n = \pm \frac{1}{\sin \gamma} (l_p m_q - m_p l_q), (\[a]{equation})$$
(22)

で計算できる。

いくつかの流星経路を表わす大円があるとき、放射点としては、それらの 大円に対する天球上の距離 θ の二乗和が最小になる点を求めればよい。この 場合の距離は、天球中心から見た中心角 θ のことである。現実の計算では、 θ の二乗和ではなく、 sin θ の二乗和を考えるほうが計算しやすい。

ここで、以前のように、大円と点とを置き換えることを考える。このとき は、経路を表わす大円をその極に置き換えればよい。とにかく、いくつかの 流星経路大円をそれぞれれその極に置き換えてみる。流星の経路大円がほぼ 一点に交わるのならば、それらの極はおおむねひとつの大円上に並ぶ。その とき、それらの極からの距離 θ に対し、sin θ の二乗和が最小になる大円を決 める。そうすれば、その大円の極のひとつが放射点になる。

図 2: 流星経路の極とそれを通る大円

何かだまされた感じがするかもしれないが、この関係はうまく成立する。 その大略の状況は図2に示したようになる。そして、考え方は違っても、経 路大円から直接放射点を求める場合と、経路大円の極に接近して通る大円か ら放射点を求める場合でも、計算式はまったく同じになる。でも、残念なが ら、その関係式から直接に放射点の位置を計算するのはちょっと困難である。 ここでは、近似位置から逐次近似でより精度の高い位置を計算する方法の概 略手順を示しておく。

それぞれの流星経路を表わすk 個の大円の極位置を $(l_i, m_i, n_i)i = 1, 2, \cdots, k$

とする。そこからつぎの値を計算する。

$$s_{11} = \sum_{i=1}^{k} l_i^2 = l_1^2 + l_2^2 + \dots + l_k^2,$$

$$s_{22} = \sum_{i=1}^{k} m_i^2 = m_1^2 + m_2^2 + \dots + m_k^2,$$

$$s_{33} = \sum_{i=1}^{k} n_i^2 = n_1^2 + n_2^2 + \dots + n_k^2,$$

$$s_{12} = \sum_{i=1}^{k} l_i m_i = l_1 m_1 + l_2 m_2 + \dots + l_k m_k,$$

$$s_{23} = \sum_{i=1}^{k} m_i n_i = m_1 n_1 + m_2 n_2 + \dots + m_k n_k,$$

$$s_{31} = \sum_{i=1}^{k} n_i l_i = n_1 l_1 + n_2 l_2 + \dots + n_k l_k,$$
(23)

このとき、 $\sin^2 \theta$ の和を最小にする放射点の方向余弦 (l_0, m_0, n_0) は、

$$f(l_0, m_0) = (s_{11} - s_{33})l_0 + s_{12}m_0 - s_{23}\frac{l_0m_0}{n_0} + s_{31}\left(n_0 - \frac{l_0^2}{n_0}\right) = 0,$$

$$g(l_0, m_0) = s_{12}l_0 + (s_{22} - s_{33})m_0 + s_{23}\left(n_0 - \frac{m_0^2}{n_0}\right) - s_{31}\frac{l_0m_0}{n_0} = 0,$$
(24)

の関係を満たす。 $f,g \in l_0, m_0$ だけの関数としているのは、

$$l_0^2 + m_0^2 + n_0^2 = 1, (25)$$

の関係があるからである。(24) 式を l_0, m_0 について解けばいいのであるが、これを直接に解くのは難しい。そこで、近似値を出発点として逐次近似で解くことにする。

 l_0, m_0 の近似値をl', m'とする。そのときn'を、

$$(n')^2 = 1 - (l')^2 - (m')^2, (26)$$

から計算しておく。そして、

$$\begin{aligned}
f(l',m') &= f_0, \\
g(l',m') &= g_0,
\end{aligned}$$
(27)

とする。

ここで、l',m'に $\Delta l,\Delta m$ を加えて、 $l' + \Delta l,m' + \Delta m$ をより真の解に近付けることを考える。それにはまず、

$$\frac{\partial f}{\partial l_0} = f_l, \qquad \frac{\partial f}{\partial m_0} = f_m,
\frac{\partial g}{\partial l_0} = g_l, \qquad \frac{\partial g}{\partial m_0} = g_m,$$
(28)

を計算する。 f_l, f_m, g_l, g_m は、偏微分を行なったそれぞれの式の l_0, m_0, n_0 にl', m', n'を代入した数値を表わすものとする。すると、

$$f_l \Delta l + f_m \Delta m + f_0 = 0,$$

$$g_l \Delta l + g_m \Delta m + g_0 = 0,$$
(29)

の連立方程式から、

$$\Delta l = \frac{g_0 f_m - f_0 g_m}{f_l g_m - f_m g_l},$$

$$\Delta m = \frac{f_0 g_l - g_0 f_l}{f_l g_m - f_m g_l},$$
(30)

で $\Delta l, \Delta m$ を計算できる。ただし、

$$f_{l} = s_{11} - s_{33} - s_{23} \frac{m_{0}(1 - m_{0}^{2})}{n_{0}^{3}} - s_{31} \frac{l_{0}(3n_{0}^{2} + l_{0}^{2})}{n_{0}^{3}},$$

$$f_{m} = s_{12} - s_{23} \frac{l_{0}(1 - l_{0}^{2})}{n_{0}^{3}} - s_{31} \frac{m_{0}(1 - m_{0}^{2})}{n_{0}^{3}},$$

$$g_{l} = f_{m},$$

$$g_{m} = s_{22} - s_{33} - s_{23} \frac{m_{0}(3n_{0}^{2} + m_{0}^{2})}{n_{0}^{3}} - s_{31} \frac{l_{0}(1 - l_{0}^{2})}{n_{0}^{3}},$$
(31)

である。

こうして得られたより高精度の近似値を新たな近似値と考え直し、同様の 手順を繰り返せば、解はしだいに真の値に近付く。そして、どのような精度 に対しても必要な解を求めることができる。

計算例

この計算には、各流星の発光点、消滅点の方向余弦、経路大円の極などの の計算が必要である。でも、ここではそれらを省略し、まず表2に、それぞ れの経路大円の極位置に基づく計算を示す。

	IX Z	祖昭八日の	極切力的示加	に国りつ口弁		
i	1	2	3	4	5	6
l_i	-0.976785	-0.463714	-0.142278	0.702072	0.907408	-0.243689
m_i	-0.213667	0.356359	0.510045	0.490160	0.370082	-0.534712
n_i	-0.015403	-0.811158	-0.848299	-0.516564	-0.199121	0.809129
l_i^2	0.954109	0.215031	0.020243	0.492905	0.823389	0.059384
m_i^2	0.045654	0.126992	0.260146	0.240257	0.136961	0.285927
n_i^2	0.000237	0.657977	0.719611	0.266838	0.039649	0.654690
$l_i m_i$	0.208707	-0.165249	-0.072568	0.344128	0.335815	0.130306
$m_i n_i$	0.03291	-0.289063	-0.432671	-0.253199	-0.073691	-0.432658
$n_i l_i$	0.015045	0.376145	0.120694	-0.362665	-0.180684	-0.197176

表 2 経路大円の極の方向余弦に関する計算

この表2から、

$$s_{11} = 2.565061, \quad s_{12} = 0.781138,$$

$$s_{22} = 1.095935, \quad s_{23} = -1.477991,$$

$$s_{33} = 2.339003, \quad s_{31} = -0.228640,$$

(32)

が計算できる。つぎに、放射点の近似位置 (l', m', n') として、流星 1 と 4 の 経路の交点をとることにする。これは、

$$l' = -0.189406,$$

 $m' = 0.827809,$ (33)
 $n' = 0.528070,$

である。これを基にしての逐次近似は表3のようになる。

1	2	3	4
-0.189406	-0.210422	-0.209337	-0.209332
0.827809	0.836244	0.835583	0.835579
0.528070	0.506378	0.507917	0.507925
0.059773	-0.003726	-0.000018	0.000000
-0.107379	0.009345	0.000048	0.000000
2.584468	2.786877	2.771844	2.771769
-0.647174	-1.065209	-1.036598	-1.036457
11.117762	12.381689	12.282616	12.282108
-0.021016	0.001084	0.000005	0.000000
0.008435	-0.000661	-0.000004	0.000000
	$\begin{array}{c} 1 \\ -0.189406 \\ 0.827809 \\ 0.528070 \\ 0.059773 \\ -0.107379 \\ 2.584468 \\ -0.647174 \\ 11.117762 \\ -0.021016 \\ 0.008435 \end{array}$	$\begin{array}{c ccccc} 1 & 2 \\ \hline 1 & 2 \\ \hline -0.189406 & -0.210422 \\ 0.827809 & 0.836244 \\ 0.528070 & 0.506378 \\ 0.059773 & -0.003726 \\ \hline -0.107379 & 0.009345 \\ 2.584468 & 2.786877 \\ \hline -0.647174 & -1.065209 \\ 11.117762 & 12.381689 \\ \hline -0.021016 & 0.001084 \\ 0.008435 & -0.000661 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

表 3 放射点位置の逐次近似

4回の繰り返しで計算は収束し、そこから放射点の位置は、

$$l = -0.209332,$$

 $m = 0.835579,$ (34)
 $n = 0.507925,$

с. У з

となる。これを赤経、赤緯に直せば、

$$\alpha = 104^{\circ}.065,$$

 $\delta = 30^{\circ}.526,$
(35)

になる。

太陽系における星間物質の検出

探査機等のParticle counterによって10⁻¹⁹~10⁻¹¹kg (直径: 0.005~2 µm@1g/cm³)の粒子を検出。 木星近傍では半数以上が星間ダストと思われる。

Arecibo Observatory

AMOR: University of Canterbury

•10⁻¹⁴~10⁻⁹kg (直径: 0.2~10 µm@1g/cm³): **4.8%** (143/3000) が c>1.0 (Arecibo, プエルトリコ, 口径300m, 430MHz)。 •5x10⁻⁹~10⁻⁶kg (直径: 10~100 μ m@1g/cm³): 3.2% (7,911/250,000)がe>1.0 (MARS: ウクライナ, 31.1MHz)。 •>10⁻¹⁰kg (直径: >5 µm@1g/cm³): 0.46% (1,600/350,000) が地 心速度 > 100 km/s (e>2.5, AMOR, ニュージーランド)。

10⁻⁴~10⁻¹ kg (-3~ -10等): **1.3%** (59/4,581)と10⁻⁹~10⁻⁴ (9.5~ -3等) kg:**1~2%** (2/160)がe>1.45 (日心速度 > 46.6 km/s、IAU/MDC銀塩写真、カナダのビデオ観測)。

http://www.ne.jp/asahi/meteor/star/index.html

SAOのSuper Schmidt camera (1950年代)

写真観測の精度

M. Hajduková Jr., et.al. (2006)

SonotaCo Net流星の地心速度

Fig. 1. Distribution of heliocentric velocities of all 14763 tv meteors from the SonotaCo tv meteor data set (left) and that of 238 sporadic hyperbolic meteors (right) shows a scattered Gaussian distribution, which in the vicinity of the parabolic limit of the velocity results in the designation of a "hyperbolic orbit".

SonotaCo Netのe>1流星の分布

Fig. 2. Positions of radiants of all 484 hyperbolic meteors with e > 1 and a < 0 from the SonotaCo tv meteor data set (left). Among them, about 50% belong to meteor showers. The best seen are Perseids, Orionids, Lyrids and Leonids. Possible interstellar meteors may be found in a subset of 238 sporadic hyperbolic meteors (right).

SonotaCo Net群流星の地心速度、 離心率分布

Fig. 3. (Left) Distribution of the eccentricities and geocentric velocities of 4 selected meteor showers from the SonotaCo tv meteor data set. (Right) A clear dependence of the contribution of hyperbolic meteors on the mean heliocentric velocity of particular meteor shower. For each meteor shower, the statistical bars (right scale) described by standard deviation (the values are 2.45 for Leonids and Lyrids, 8.06 for Perseids and 6.03 for Orionids) in the Poisson distribution are also shown.

SonotaCo Netの系外流星候補

Table 3. Orbital and geophysical parameters of sporadic meteors with the highest hyperbolic excesses from the catalogue.*

No	Δv_H	а	q	е	i	ω	Ω	v_G	v_H	H_B	H_E	α	δ	Date
1	2.906616	-3.1719	0.9873	1.3113	153.2990	17.5802	314.3032	72.2055	45.0466	116.4608	97.5654	40.8063	-1.0117	20090807
2	2.413593	-4.4687	0.4238	1.0948	172.4046	84.4393	216.3326	67.7870	44.5536	112.1436	97.1492	160.2762	11.7301	20091030
3	1.749275	-7.1290	0.3644	1.0511	92.1684	76.7512	306.9017	53.7345	43.8893	109.0628	93.5124	265.7705	5.73063	20090127
4	1.655059	-7.0150	0.9869	1.1408	138.8532	353.4157	158.5104	69.2782	43.7951	114.5988	107.8883	244.0461	-46.2328	20080228
5	1.637756	-7.2995	0.6479	1.0888	118.2225	250.1847	236.2207	61.6854	43.7778	110.5130	100.1769	128.0265	49.9482	20091118
6	1.517986	-7.5975	0.6115	1.0805	127.6048	74.8215	42.2466	63.4425	43.6580	110.0928	86.8926	102.7711	-2.2121	20091105
7	1.172435	-12.1111	0.6239	1.0515	113.4426	73.3922	83.0851	60.0501	43.3124	107.1496	96.2900	134.3140	-15.7582	20081215
8	1.116752	-12.4761	0.3427	1.0275	110.6198	286.6849	251.5134	57.4556	43.2568	107.9839	76.3223	128.7595	43.7464	20091204
9	1.065891	-10.9042	0.2650	1.0243	44.7305	116.6991	33.8677	42.3749	43.2059	106.4742	78.1823	57.8889	-1.7378	20071028
10	1.022281	-10.9347	0.9894	1.0905	138.6304	188.9884	206.7840	68.4448	43.1623	111.5236	98.0221	121.7677	45.3705	20071021
11	1.015846	-14.9901	0.8166	1.0545	144.9689	228.0297	266.3948	68.6731	43.1559	119.4170	90.5691	169.7854	25.2608	20071219
12	1.000133	-13.3490	0.5948	1.0446	104.7752	257.2814	234.9293	57.0778	43.1401	111.5325	92.6466	119.7808	55.6560	20071118
13	0.988334	-15.6856	0.0622	1.0040	29.4713	150.4318	117.5185	47.1615	43.1283	92.0160	75.6131	144.2607	7.4429	20090118
14	0.945392	-14.0671	0.8241	1.0586	105.1398	47.5380	51.4911	57.9997	43.0854	106.6146	100.3348	112.2150	-19.4376	20081114
15	0.924201	-17.6992	0.2590	1.0146	126.9657	117.5512	99.5250	59.7285	43.0642	106.0061	87.4463	145.3108	-4.1827	20080101
16	0.915649	-15.1945	0.4282	1.0282	109.4251	96.7721	57.3985	57.4667	43.0557	107.5014	92.1034	106.1021	-5.0183	20091120
17	0.910201	-17.1081	0.5668	1.0331	131.6527	80.5221	77.2677	63.7310	43.0502	109.0144	93.8300	134.4448	-6.1496	20071210
18	0.910102	-13.1827	0.7303	1.0554	93.1585	241.0439	215.3270	53.4044	43.0501	109.8385	91.2329	91.5430	66.8080	20091029
19	0.902751	-11.1621	0.4186	1.0375	150.2971	278.1843	16.0001	64.7418	43.0428	121.8153	73.6785	254.0254	-10.4049	20090406

* The symbols denote: Δv_H -the hyperbolic excess in heliocentric velocity, *a*-semimajor axis, *q*-perihelion distance, *e*-eccentricity, *i*-inclination, ω -argument of perihelion, Ω -ascending node, v_G and v_H velocities (geocentric and heliocentric), H_B and H_E beginning and end height in the atmosphere, α and δ -equatoreal coordinates right ascension and declination of the radiant of a meteoroid, Date-year, month, day of observation.

重野さん等の流星ステレオ観測 および軌道データ

- ・1983年2月~1992年5月までは銀塩写真。
- •1992年12月~2009年10月は主にII-TVカメラ。 (2001年しし座流星群は銀塩写真も稼働。)
- ・3886個の流星軌道データ。

し 座 流 星 群 の 離 心 率 分 布

2001.11.18の輻射点、 R.A: 2°× Dec.: 1°の範囲。 合計写真II-TV流星数: 1107535平均: 0.9010.9000.904標準偏差: 0.0460.0230.074

オリオン座流星群の離心率分布

標準偏差:0.100

ペルセウス座流星群の離心率分布

標準偏差:0.094

ふたご座流星群の離心率分布

1999.12.12-16の輻射点。 R.A: 7.7°× Dec.: 2.9°の範囲。 流星数 : 87 平 均:0.882 標準偏差:0.012

系外流星候補

No.	VH	VH err	e	q	ω	Ω	i	L abs	精度、備考
1	54.7	3.05	1.054	0.040	330.5	346.0	22.6	3.9	\bigtriangleup
2	50.1	0.75	1.860	1.012	181.7	146.4	177.8	3.4	◎、軌道が黄道面
3	49.8	0.80	1.783	0.954	24.8	314.0	132.6	0.3	\bigcirc
4	49.5	1.42	1.217	0.292	286.6	346.0	44.4	4.6	\bigcirc
5	47.8	1.02	1.588	0.986	162.9	140.1	116.4	3.5	○、Per群
6	47.2	0.46	1.442	0.846	222.9	30.8	148.9	3.4	\bigcirc
7	47.0	2.71	1.471	0.982	11.7	31.5	123.1	3.7	\bigtriangleup
8	46.9	1.20	1.382	0.822	225.5	211.5	118.7	3.4	\bigcirc
9	46.6	2.45	1.233	0.561	77.1	97.0	140.6	4.2	\bigtriangleup

系外流星候補2の軌道 q: 1.012 e: 1.909 Ω: 146.4 ω: 181.6 i: 177.9 到来方向: しし座 上星に約5 au接近

系外流星候補8の軌道 q: 0.822 e: 1.382 Ω: 211.5 ω: 225.5 i: 118.7 到来方向: りょうけん座

- ・重野さんらの3886の流星軌道データを解析。
- •日心速度誤差は経路長と観測等級に相関。
- ふたご群の離心率の標準偏差: σ = 0.012。
- 168/3886 (4.3%) がe > 1.0。
- e > 1.0にPer, Ori, Leo群の流星が多数混入。
- ・9/3886が系外流星候補V_H>46.6 [km/s]。
- ・系外候補9流星のうち、
 - ・1流星はPer群。
 - ・系外は8流星(0.21%)?ただし、3流星は精度が低い、1流星は黄道面逆行。

MSS資料集ホームページ ~2017年度更新~

重野好彦

MSS資料集を2017年度版に更新しましたのでお知らせします。

🛃 <u>http://msswg.net</u>

日時 2017年7月2日(日) 13時~17時

場所 渋谷区 神宮前 穏田(おんでん)区民会館 会議室3号(2階) 内容 放射点位置の数値計算1(長沢工) CAMSとSonotaCoネットで得られたデータ(小関正広) MSS資料集ホームページ~2017年度更新~(重野好彦) Canon aps-c 安価標準ズームの進化(重野好彦) 募集中! 費用 300円 幹事 重野好彦/寺田充

流星物理セミナーは 2月/7月/10月 の第1日曜日に開催しています。

<u>1. 資料集</u>

本資料集は2017年6月版です。

<u>2009年度資料.pdf</u>

1 MSS00-1-はじめに.txt MSS00-2-<u>ごあいさつ.txt</u> MSS00-3-インデックス.txt MSS00-3-インデックス.xls MSS00-A-50回記念誌上.pdf MSS00-B-50回記念誌下.pdf MSS01-隕石.pdf MSSO2-隕石落下シミュレーション.pdf MSS03-遠征観測報告.pdf MSS04-音.pdf MSS05-解析法.pdf MSS06-観測機器.pdf MSS07-観測結果.pdf MSS08-観測理論.pdf MSS09-軌道計算研究発表.pdf MSS10-軌道計算精度.pdf MSS11-軌道計算論文.pdf MSS12-軌道シミュレーション.pdf

観測報告と流星用プログラム

2014年度資料.pdf

1 MSS13-1-議事録(第1~28回).pdf MSS13-2-議事録(第85回以降).txt MSS14-空間密度.pdf MSS15-構造.pdf MSS16-痕.pdf MSS17-シューメーカーレビー9.pdf MSS18-出現予報.pdf MSS19-スペクトル.pdf <u>MSS20-測光.pdf</u> MSS21-その他.pdf MSS22-電波.pdf MSS23-同時観測.pdf MSS24-同時観測MSS-WG.pdf MSS25-同時観測理論.pdf MSS26-発光.pdf MSS27-輻射点.pdf MSS28-豆まき現象.pdf

MSS-all.zip 上記全ファイルを1ファイルに圧縮しました。(約900MB)

<u>2. 流星物理セミナー・ワーキンググループ(MSS-WG)の紹介</u>

			OB会誌講読アクセス致
<u>カメラレンス性能研究室</u>			号 編集日 公開後3ヶ月
ユニークアクセス数	PC	PC/年換算	83 (2013. 01. 22) 125
2009.01.18~2009.05.30	59	163	84 (2013. 07. 24) 192
2009. 05. 30~2010. 07. 01	119	109	85 (2013. 10. 27) 242
2010. 07. 01~2011. 09. 30	164	131	86 (2014. 01. 20) 117
2011. 09. 30~2012. 06. 28	88	118	87 (2014. 08. 09) 184
2012. 06. 28~2013. 03. 27	174	234	88 (2014. 10. 23) 480
2013.04.14~2013.06.30	85	403(サーバ変更)	89 (2015. 01. 26) 325
2013. 06. 30~2014. 04. 27	176	214	90 (2015. 07. 16) 308
2014. 04. 27~2014. 07. 05	86	455(ドメイン変更)	91 (2015. 10. 28) 146
2014. 07. 05~2015. 06. 28	928	947	92 (2016. 03. 15) 179
2015. 06. 28~2016. 06. 28	480	480	93 (2016. 08. 08) 141
2016.06.28~2017.06.25	503	507	94 (2017. 01. 09) 125

【渋谷区 神宮前 穏田(おんでん)区民会館 案内図】

	Page	MB	旦	年.月.日	発表	参加	旦	年.月.日	発表	参加
MSS00-1-けじめに tyt	1 dge 6	0	1	1978.10.08	5	16	74	04.23	-	15
MSS00-2-5 avide tyt	4	0	2	1979. 02. 12	6	40	75 76	07.16	-	16
MSS00-3-インデックス tyt	-	_	3 4	04.15 06.24	4	20 33	76 77	10.15	_	12 27
MSS00-3-インデックス v1s	_	_	5	09.09	3	34	78	04.07	-	17
MSS00-A-50回記今誌上 ndf	174	33	6	11.11	6	35	79	07.07	-	19
MSS00-B-50回記今誌下 ndf	187	34	7 8	1980. 01. 20 03_16	6 8	18 37	80 81	10.13 1997 01 26	_	7 14
MSS00 D SOE HLZEN , pur MSS01-唱石 ndf	61	19	9	05.18	7	30	82	04. 12	-	12
MSS01 隕石波下シミュレーション ndf	78	12	10	07.13	7	35	83	07.13	-	31
MSS02 隕石裕(シミユレーション.pul MSS02-造江湖測起生 ndf	225	1 <i>5</i> 58	11	09.28	7	50 25	84	10.05	-	27
MSS05 还正就例取日,put	49	7	12	11.10	3	35 ?	85 86	1998. 01. 11 04. 19	э 3	29 25
MSSO4- 日. pul	40 194	(91	14	03. 29	6	40	87	07.12	7	31
MSSO5 府们在.pdf	109	51	15	05.17	8	63	88	10.18	5	25
MSS00 税积机效敌,pul	210	50 70	16 17	07.19	7 8	20 32	89 90	1999.01.10 04.18	8	34 18
MSS07- 観測抽末, pai	510	10	18	11.01	7	36	90 91	07.11	5	21
MSSUO-観測理論.pul	107	15	19	1982.01.15	6	37	92	10.17	7	25
MSSU9-帆旭訂昇研充完衣.pdl	107	41	20	03.21	4	26 45	93 04	2000. 01. 30	8	40
MSSIU-"帆旭訂昇相及.pdl	91	19	21 22	05.10	4	43 47	94 95	10, 15	5 8	21
MSSII	120	35	23	10.03	7	41	96	2001. 02. 12	10	41
MSS12-軌道ンミュレーンヨン.pdf	133	26	24	1983.01.07	8	50	97	04.15	12	30
MSS13-1- 歳事録. pdf	53	9	25 26	03.08	6 4	36 44	98 99	07.08	5 0	23 27
MSS13-2-歳事録.txt	-	0	20 27	07.03	4 6	45	100	2002. 02. 17	16	46
MSS14-空間密度.pdf	116	36	28	10.02	2	41	101	07.07	8	24
MSS15-構造.pdf	5	1	29	12.18	7	45	102	10.20	6	20
MSS16-痕.pdf	279	72	30 31	1984. 03. 11 05_13	2	32 30	103 104	2003.01.19	10 4	18 20
MSS17-シューメーカーレビー9.pdf	35	8	32	07.22	4	30	101	10.19	4	11
MSS18-出現予報.pdf	79	26	33	09.30	2	33	106	2004. 02. 29	8	29
MSS19-スペクトル.pdf	91	18	34	12.09	5	31	107	07.04	6	28
MSS20-測光.pdf	19	7	35 36	1985. 03. 17 06. 02	2 4	20 40	108	10. 24 2005. 02. 20	6 4	13 11
MSS21-その他.pdf	281	68	37	09.01	2	28	110	07.03	4	11
MSS22-電波.pdf	217	39	38	12.22	5	30	111	10.16	9	22
MSS23-同時観測.pdf	129	32	39 40	1986. 04. 20 07. 06	3	32	112	2006. 02. 05	10	22
MSS24-同時観測MSS-WG.pdf	165	44	40 41	10.05	4	: 29	113	10.15	10	9 12
MSS25-同時観測理論.pdf	46	14	42	1987.01.11	6	24	115	2007.02.04	8	15
MSS26-発光.pdf	11	2	43	04.19	3	20	116	07.01	8	30
MSS27-輻射点.pdf	218	38	44 45	07.05 10.04	6 5	31 18	117	10.21	4	12 14
MSS28-豆まき現象.pdf	24	5	46	1988.01.10	1	10	119	07.06	7	18
MSS30-2009~2017.pdf	-	101	47	04.17	7	21	120	10.05	9	14
合計	3, 791	967MB	48	07.03	4	38	121	2009. 02. 08	6	23
[MSS-001回から145回までを集計]			49 50	1989, 04, 23	6	25 32	122	10.05	9	17 23
			51	07.16	-	51	124	2010. 02. 07	11	20
			52	10.29	-	?	125	07.11	6	25
			53 54	1990. 01. 14	-	?	126 127	10.10	8	27 21
			54 55	04.15 07.15	_	?	127	2011. 02. 00	3	15
			56	10.07	-	?	129	10.02	4	20
			57	1991.01.15	-	?	130	2012.02.05	5	17
			58 59	04.14	_	38 34	131 132	07.01	4	18 25
			60	10.06	_	34 36	132	2013. 02. 03	3	12
			61	1992.01.15	-	40	134	07.07	5	17
			62	04.12	-	41	135	10.06	8	20
			63 64	07.05 10.04	_	26 31	136 137	2014.02.02	8 5	25 24
			65	1993. 01. 17	_	37	138	10.05	4	13
			66	04.11	-	48	139	2015.02.01	5	23
			67	07.04	-	26	140	07.05	5	21
			68 69	10.17 1994.01-16	_	22 30	141 142	10.04 2016.02.07	4 5	14 18
			70	04.10	_	25	143	07.03	6	31
				06 96	_	49	144	10 02	2	16
			71	06.20		42	144	10.02	5	10
			71 72	1005 01 00	-	42 18	144	2017. 02. 05	2	26

2017. 10. 1

アメリカ・オレゴン州・ミッチェルにおける皆既日食観測報告および カナダ・カナナスキスの星空

明治大学天文部〇日 佐藤 忠

2017 年 8 月 21 日アメリカで皆既日食が見られた。その皆既日食を観測するためアメリカに遠征 した。また、参加した観測ツアーで、日食観測後カナダのバンフ国立公園に観光で行った。その際 カナナスキスに滞在し、夜間、星空の観察と撮影を行った。

皆既日食とカナナスキスでの星空の状況を報告します。

1.アメリカ皆既日食

(1)観測の目的

今回の日食では、デジタルー眼レフカメラで外部コロナを撮影することを主目的とした。 その際、露出時間が不明確であったので、段階的に露出時間を変え撮影した。また、肉眼で コロナ(等)を視認することも目的とした。

(2) 観測地

アメリカ合衆国 オレゴン州 ミッチェル (ミッチェル・スクール)

緯度:北緯 44°33′51″ 経度:西経 120°08′48″ 標高:892m

(3) 観測(撮影) 機材

カメラ:Nikon D750

レンズ:AF-S NIKKOR 300mm f/4 PF ED VR + AF-S TELECONVERTER TC-14 E III

(4) 観測(撮影) 方法

カメラの絞り値をF6.3、ISO感度を800に固定し、シャッター速度を1/250 sから1/6 sまで変え、秒6コマで連写した(マニュアルモード)。ピント合わせはオートフォーカス(モ ード)で行った。カメラは三脚に固定した。

(5)観測結果

①外部コロナの撮影

外部コロナはシャッター速度 1/160 s から 1/6 s で撮影可能であった。主観的には 1/40 s が最適と思われる。1/10 s より長い露出時間(シャッター速度)では背景の明る さにコロナが埋もれてしまっていた。

②コロナ(等)の観測

撮影に集中してしまったため、一瞬コロナを視認しただけであった(太陽左斜め下 方向のコロナのストリーマーを視認した)。また第3接触の直前、カメラのファイン

ダーを通して、右斜め上方に多数のプロミネンスを視認した(明るいピンク色)。

2. カナナスキスの星空

8月23日夜半から24日深夜にかけて観察・撮影を行った。夜空は暗く、素晴らしい星空 であった。撮影は24-120mm(f4)ズームレンズを使用し24mmに合わせた(絞り:開放)。 固定撮影で夏の大三角、カシオペア、わし座を撮影した(露出30s)。流星の出現を期待した が見られなかった。23日夜半に人工衛星が4個見られた。 以上

<u>日 程 表(Hコース/エアーカナダ航空・西海岸&カナダ7日間)</u>

1	年月日	場所	時間	摘	食事
	2017年				
		<u>成</u> 田 バンクーバー	発 17:00 着 09:45	成田空港集合。 空路、バンクーバーへ。(AC004)	機内
1	8/19 (土)	⋺ ₽⊧₩	発13:10 着14:01	空路、シアトルへ。(AC8095)	· · ·
	i.	ベンド	着後、貸切	バスでベンドへ移動。 【ベンド泊】	自由
		ベンド	午前:貸切	バスで観測地の下見を行います。	朝食
2	8/20 (日)	- >79-7 -	- 午後:カら 屋倉	ホーイの町「シスタース」へ移動し、 を兼ねて楽しいお買い物をどうぞ!	自由
		ベンド	夕刻:自然 各自	派スーパーで夕食や嗜好品お土産など でお買い求めください。	自由
				【ベンド泊】	
		ベンド	早朝:皆既	日食観測ポイントへ移動します。	朝食
2	9 /01	観測地	午前:皆即		同合
С -	(月)	ダルズ	午後:貿切	NAでタルスへ移動します。	些良
	1	Dark of The Sky Park		Dark of the Sky Park」で大体観測をし、 天の川など素晴らしい夜空をお楽しみ下さい。 【ダルズ泊】	夕食
	ч.	ダルズ	午前:貸切 賑や	バスでポートランドへ移動し、ダウンタウンの かな通りで自由行動。	朝食
4	8/22 (火)	ポートランド カルガリー	発 13:55 着 16:46	空路、カルガリーへ(AC8316) 着後、ホテルへ移動。	自由
Genera i		バンフ国立公園		【バンフ国立公園泊】	自由
40 40			終日:貸切の絶)バスで「バンフ国立公園」(レイク・ルイーズ湖) 景を楽しみ、絶対の外せないアトラクション	朝食
5	8/23 _{(水})	バンフ国立公園	雪上 1 E	軍に乗ってコロンビア大氷原へ向かいます。 たっぷりのツアー。	昼食
		バンフ国立公園		「バンノ国立公園旧」	日田
	0/04		28 40.00		初良
6	o/ 24 (木)	ענגאנג	ft 13:30	空路、队田八。(ACUUY) 【继内泊】	機内
					機内
7	8/25 (金)	成田	著 14:35	O成田空港着午後2時35分。	ר יוסגע

★利用航空会社 AC-エアーカナダ航空

★上記日程は2017年2月2日作成したもので、航空機の変更、道路、天候等の事情等で変る事も有りますので予めご了承下さい。 ★昼:含まれる昼食事は弁当の時もあります。

2017年アメリカ日食報告

重野好彦

1. 1981年7月31日シベリア日食以来、36年21日ぶり、2回目の皆既日食に出かけてきました。まずは シベリア日食から紹介します。当時はソ連時代ですから自由旅行はできません。日本からは日ソ旅行 社のツアー1つだけで150名程が参加しました。世界中からの旅行者は500名程でしたが、全員が同じ 場所で観望しました。

図1. コロナのディティール CanonFTb 200mmF4×2倍テレプラス 絞り開放 富士フイルム100 1s, 1/2, 1/4, 1/8, , 1/30, 1/60 古いフィルム→スキャン→画像処理→ ステライメージ7 ローテーショナルグ゙ラディエント処理 図2. 連続撮影(フィルム1コマに多重露出) CanonAE1 24mmF2.8 コダクローム25 部分食:ND400×2枚重ね(ND16万) 1/15s F8(推定) 皆既食:フィルター無し 2s F2.8開放 雲のため露出がばらばらになった

2. 2017年8月21日の日食は 米国を西から東に横断するも ので、どこで観察しても良かっ たのですが、晴れやすい乾燥 地帯とのことでオレゴン州マド ラスにしました。

当日、皆既中心帯に沿って 東西に延びる雲があり、ほと んど動かなかったので、南に 数十km逃げました。

左:図3. コロナのディティール Canon6D 400mmF5.6×1.4倍エクステンダ- 絞り開放 ISO:100 4s~1/250(1.67段きざみで7コマ) ステライメージ7 ローテーショナルグラディエント処理

下:図4.連続撮影 Canon5DIV 16mmF4 ISO:100 皆既食:フィルター無し 4s F8 Photoshop 比較明合成 全て快晴。偶然にもシベリア日食と同じような風景。

マドラスには全米から数千台の車が集まり、用意した大農場もご覧のように難民キャンプ状態でした。 そして日食の後、大渋滞を引き起こし、我々も14時間巻き込まれました。右:山火事も渋滞の原因に。

3. 安<行<日食個人旅行

日食ツアーは短い旅行なのに高額です。しかし5日前に行って5日後に帰ることで安くできます。 1)観測地を決めたら1年半前から予約を始めましょう。ホテル予約サイトが幾つかありますが、 どれも1年前からのため間に合いません。googleまたはgoogleマップでホテルを探し、ホテル のサイトで1年半前に予約できるところを見つけます。通常料金で予約可能です。 2)航空券は1年前に受付開始になるので、帰りの便の1年前に往復券を購入します。主な旅行

代理店がネット販売を受け付けており、もちろん通常料金で購入可能です。

アメリカ横断皆既日食 IN BOYSEN WY

中心線近く、そして雲を避ける ために、キャスパーにホテルを3 泊分抑えてあるにもかかわらず、 移動して、キャンプ(テント・寝袋) しました。

今回のツアー講師浅田英夫さん撮影

今回、初めて金星以外、恒星である シリウスを皆既中に肉眼でみました。 残念だったのは、この二つ以外は見 つけることが出来ませんでした。

当日の等級データ 水星 3.2 金星 -4.0 観えました 火星 1.8 木星 -1.8 シリウス -1.46 観えました リゲル 0.12 ベテルギウス 0.50 カペラ 0.08 プロキオン 0.38 レグルス 1.35 アルクトゥルス -0.04 スピカ 0.98

第二接触の時

本影錐用にセットした動画から切り出し

西側は小高い山というか丘があり、赤く染まったのをみたのは第三接触あたりからです。

MSS-147 そのんも

柳信一部 WILD USA・ワイオミング州ジャクソンホール ド町口合知測2つの国立公園200 皆既日食観測&2つの国立公園ツアー8日間 最終日程表

日 次	日 付 (曜日)	都市	現地 時間	交通機関	スケジュール 宿泊	食事
1	8/18 (金)	*羽田空港 ご集合 羽 田 発 ーー日付変更線ーー	<u>13 : 55</u> 16 : 25	⊁ AA26	◇ご出発の2時間30分前に羽田空港・国際線ターミナ ルにご集合ください ◇午後:アメリカン航空機にてロザンゼルスへ	× × ×
		ロサンゼルス 着 ロサンゼルス 発 ソルトレイクシティ着	10:55 15:45 18:29	→ AA3010	 ◇着後、航空機を乗り継ぎソルトレイクシティへ ◇ガイドと共に市内のホテルへ 宿泊:ホテル泊 	
2	8/19 (土)	ソルトレイクシティ発 ジャクソンホール 着	朝		 ◇朝:専用バンにて出発。ジャクソンホールへ ◇着後、ピクニックランチをはさんでエリア散策 ◇キャンプの買い出しや日食の下見なども ◇今日はキャンプグランドにてキャンプ 宿泊:キャンプ(テント) 泊 	× 昼食 夕食
3	8/20 (日)	ジャクソンホール グランド ・ティートン国立公園			*朝、希望者はラフティングが可能です(無料) ◇グランドティートン国立公園の観光に出発。ムースな どの野生動物との出会いに期待して、トレイルを歩い たり大自然を満喫ください ◇キャンプグランドにてキャンプ 宿泊:キャンプ(テント)泊	朝食 昼食 夕食
4	8/21 (月)	☆ 皆既日食 ☆ ジャクソンホール 発 イエローストーン 着	午後 夕刻) () ()	 ◇朝食後、日食観測場所まで移動/観測準備 ◇皆既日食観測 (食最大11:36/継続2分20秒/高度50.4°) ◇片づけの後、専用車でイエローストーンへ。 ◇今日はホテル泊 	朝食 × ×
5	8/22 (火)	イエローストーン 国立公園 イエローストーン 発 ジャクソン周辺 着	 午後 夕刻	,,	 ◇午前:イエローストーン国立公園を訪ねます。 ◇午後:専用車でジャクソン方面に戻り、カウボーイ時代の雰囲気の牧場へ。ウエルカム・ディナー ◇今日はファーム・ステイ 宿泊:ファームステイ(宿泊棟) 	× × 夕食
6	8/23 (水)	ジャクソン周辺 発 ソルトレイクシティ着	午後午後	 .	 ◇午前:フリータイム *希望者はオプションで乗馬体験も可能です(有料) ◇午後:専用車でソルトレイクシティへ 宿泊:ホテル泊 	× × ×
7	8/24 (木)	ソルトレイクシティ発 ダ ラ ス 着 ダ ラ ス 発	08:00 11:38 13:00	 ✤ AA2628 ✤ AA61 	 ◇早朝:専用車で空港へ ◇朝:航空機でダラス・フォートワース空港へ ◇国際線に乗り継ぎ、一路、帰国の途へ 宿泊:機中泊 	× × ×
8	8/25 (金)	日付変更線 成 田 着	16:30		◇午後:成田空港到着 宿泊:なし	×

*天候や交通機関のやむをえない事情、現地事情による日程の変更はあらかじめご了承ください

2017/7/2 流星物理セミナー 日本流星研究会 小関正広

1. はじめに

CAMS とは Cameras for All sky Meteor Surveillance の略であり、Jenniskens の主導の下、表1に示すような統 ーされた機材によって運用されている。カメラ1台の写野は22.5×29.9度であり、SonotaCoネットで一般的 に使われているものに比べてかなり狭い。詳細については"CAMS Cameras for All sky Meteor Surveillance: Manual for the CAMS BeNeLux network. Edition July 2015", Paul Roggemans (how_to_start_with_cams.pdf)を参照 されたい。

Table 1: Required equipment and prices in Euro (according to recent purchases)

Watec 902H Ultimate	360
Pentax 12mm f/1.2	118
C-CS Mount adapter	2
Ez-Cap Framegrabber	35
CCTV video cable	20
BNC-cinch adapter	2
Adapter 12V (be sure to buy one of good quality)	13
Total costs in Euro	550
If not available yet a PC with recent multi core processor	600
If the cameras are installed outdoors, security camera housing	50

<u>http://cams.seti.org/</u>に掲載された 2017 年 5 月 1 日の記事に、「2016 年のデータ処理が終了した。CAMS 全体 では 106,000 個の軌道を得ている。内訳は、California: 38,331; BeNeLux: 25,132; New Zealand: 16,118; LOCAMS(Arizona): 12,267; UAE: 10,118; Florida: 3,137; Mid-Atlantic: 942」と記されている。

CAMS で得られたデータのうち、論文発表が行われた 2010 年 10 月 21 日から 2013 年 3 月 29 日の期間のデー タは公表されている。110,259 まで番号が振られているが、実際に存在するデータは 109,548 個である。デー タの使用に際しては、引用元として次の論文が指定されている。

P. Jenniskens, Q. Nénon, J. Albers, P. S. Gural, B. Haberman, D. Holman, R. Morales, B. J. Grigsby, D. Samuels, C. Johannink, 2015. The established meteor showers as observed by CAMS. Icarus (in press) http://dx.doi.org/10.1016/j.icarus.2015.09.013

今回はCAMSのデータ期間に合わせて2010-13年のSonotaCoネットのデータを使用して両者の比較を行う。

第	2	表	:	デー	·タ中	って	眻流		の占	める	割	\$。	上位	20
位	ŧ	でを	ŀ	IAU	の略	} 号	によ	っ	て示	す。	補約	主参	照。	

rank	SonotaCo		CAMS	
1	11.34	GEM	5.02	GEM
2	6.17	PER	4.40	PER
3	2.98	ORI	2.87	ORI
4	1.82	COM	1.40	SDA
5	1.60	STA	0.95	ETA
6	1.59	HYD	0.85	STA
7	1.29	LEO	0.64	CAP
8	1.26	NTA	0.62	QUA
9	1.12	ETA	0.56	HYD
10	0.73	SDA	0.47	NTA
11	0.70	QUA	0.47	COM
12	0.64	DAD	0.41	NZC
13	0.52	NOO	0.38	PPS
14	0.48	SPE	0.36	NOO
15	0.47	MON	0.34	AOA
16	0.36	CAP	0.29	NUE
17	0.30	BPI	0.28	XAR
18	0.26	LYR	0.26	NDA
19	0.25	_S26	0.25	LYR
20	0.24	ERI	0.25	MON

CAMS が2年半、SonotaCo ネットが4年間であるが、両者の軌道数がほぼ等しくなる。

CAMS のデータで注意が必要なのは日付の列を別の ブックにコピーしようとすると、勝手に日付が変更され てしまうことである。作成したエクセルは日付の開始を 1904年1月1日としている(マックのエクセル仕様)た め、windows版のエクセルで使用するには1462日を加 える操作が必要になる。

2. ビデオ観測における主要流星群

一般に三大流星群と言えば、しぶんぎ群、ペルセウス 群、ふたご群を指している。しかし、ビデオ観測の結果 によると、ふたご群、ペルセウス群は同じだが、第3位 にはオリオン群が入ってくる(第2表参照)。NMS 同報 に投稿されたメールを確認すると 2010 年は活発(2006 年ほどではない)、2011-12 年は平年並み、2013 年は地 味という表現なので、本稿で扱っている期間に突発が あったわけではない。第1 図に年間を通じた太陽黄経1 度ごとの軌道数(総数を10,000 個に規格化)を5 度間隔の 移動平均で示しているが、やはり、これら3 群のピーク が明確である。しぶんぎ群の活動が短時間だから総流星 数が少ないというだけの問題ではなく、眼視観測とビデ オ観測で捕捉率に違いがあると考えた方が良い。

また、η-みずがめ群(ETA)が両者ともに上位に入って いる点は目を引く。全流星数の1%という割合はかなり

第1図:太陽黄経1度あたりの捕捉数(5度の移動平均)。全流星数を10,000個として規格化して比較。 の高率であり、日本やカリフォルニアの緯度を考えると従来の眼視観測よりも捕捉率が高いようである。

第3表はIAUMDCで古典的な流星群であるNo.1-31に対する捕捉率を示したものである。捕捉率が'0'となっているものは、「流星群」として扱われていないことを意味する。また、'others'とは IAUMDCNo.32 以降の 群、または、SonotaCo ネットで設定されているこの他の群の割合を示している。ここでも眼視観測で名の知 れた流星群捕捉率がビデオ観測特有の流星群よりも低い場合がしばしばみられる。こと群 IAU6 (LYR)を例に とると、これよりも捕捉率が大きい群に IAU16(HYD)、IAU19(MON)、IAU20(COM)がある。

第3表: IAUMDCNo.1-31 の流星群についての捕捉率

IAUNo.	SonotaCo	CAMS		
1	0.36	0.64	CAP	alpha Capricornids
2	1.60	0.85	STA	Sorthern Taurids
3	0	0	SIA	Southern iota Aquariids
4	11.34	5.02	GEM	Geminids
5	0.73	1.40	SDA	Southern delta Aquariids
6	0.26	0.25	LYR	April Lyrids
7	6.17	4.40	PER	Perseids
8	2.98	2.87	ORI	Orionids
9	0.00	0.03	DRA	October Draconids
10	0.70	0.62	QUA	Quadrantids
11	0.06	0.00	EVI	eta Virginids
12	0.14	0.03	KCG	kappa Cygnids
13	1.29	0.20	LEO	Leonids
14	0	0	XOR	chi Orionid Complex
15	0.21	0.07	URS	Ursids
16	1.59	0.56	HYD	sigma Hydrusids
17	1.26	0.47	NTA	Northern Taurids
18	0.05	0.03	AND	Andromedids
19	0.47	0.25	MON	December Monocerotids
20	1.82	0.47	COM	Comae Berenicids
21	0.01	0.01	AVB	alpha Virginids
22	0.08	0.06	LMI	Leonis Minorids
23	0.15	0.03	EGE	epsilon Geminids
24	0.00	0	PEG	mu Pegasids
25	0	0.05	NOA	Northern October delta Arietids
26	0.00	0.26	NDA	Northern delta Aquariids
27	0.01	0.02	KSE	kappa Serpentids
28	0	0.15	SOA	Southern October delta Arietids
29	0	0	DLE	delta Leonid Complex
30	0	0	PSC	Piscid Complex
31	1.12	0.95	ETA	eta Aquariids
	6.82	8.59		others
	60.76	71.71		sporadics

CAMS と SonotaCo ネットを比べる と、SonotaCo ネットではふたご群の 割合が群を抜いているのに対して、 CAMS はそれほどでもない。また、 みずがめδ南群(SDA)はふたご群とは 逆に CAMS の捕捉率が SonotaCo ネッ トの倍近い。この他、おうし南・北 群(STA, NTA)については SonotaCo ネットが CAMS のほぼ倍である等々 の違いがみられる。 これらには次のような原因がある

- と考えられる。
 - (1)機材の違い

(2)天候等の観測条件

(3)流星群の定義・群判定の方法の 違い

これらの問題については次項で考察 することにして、こと群より捕捉率 が高く、両者に共通する流星群をビ デオ観測における主要流星群として 以下に掲げる。

やぎ群(CAP)、おうし南群(STA)、 ふたご群(GEM)、みずがめδ南群 (SDA)、こと群(LYR)、ペルセウス 群(PER)、オリオン群(ORI)、しぶん ぎ群(QUA)、うみへび群(HYD)、お うし北群(NTA)、12 月いっかくじゅ う群(MON)、かみのけ群(COM)、η みずがめ群(ETA)、11 月オリオン群 (NOO)。

補欠として CAMS ではこと群を下回 る、しし群(LEO)、を挙げておく。 「1. はじめに」で述べたように、両者が使用している機材には、かなりの違いがある。当然、大きなレンズを使用している CAMS の方が暗い流星まで捉えられるはずであり、焦点距離の長いレンズだから観測精度も上がることが予想される。

まずは、CAMS と SonotaCo ネットで捉えられてい る流星の光度分布を比べると、確かに CAMS の流星 数のピークが暗い流星の側にずれ、また、SonotaCo ネットよりも暗い流星を捉えていることがわかる。 しかし、その差は1等級程度で小さいものと言える。

ここで注目されるのは、CAMS において-10 等を越 える大火球が記録されていることである。また、よ く見ると光度分布の傾きも CAMS の方が SonotaCo ネットのものに比べて緩やかである。測光方法の違 いといった原因も考えられる。

また、観測された流星の速度分布を第3図に示す が、30km/s以下の低速の流星を CAMS は SonotaCo ネットよりも多く捉えている。これは SonotaCo ネッ トで一般的に使われている短焦点のレンズでは緩速 で短経路の流星を検出しにくいためだろうと推測さ れる。

第4 図は撮影された流星を地心速度の順番に並べ て 1,000 個ごとに光度の移動平均を求めたものであ る。SonotaCo ネットでは速度による変化は小さいが、 CAMS では地心速度が小さいほど暗い流星を捉えて いることが明らかである。地心速度 20km/s 程度では 平均光度で 1.0 等級の差があり、それ以下になると 1.5 等級に達している。地心速度が 70km/s 程度では両 者にほとんど差が見られなくなる。短焦点のレンズ では暗くて見かけの角速度が小さい流星は見逃され がちになるのに対して、焦点距離が長くなると逆に 角速度の大きい流星は捉えにくくなると考えられる。

第5図はふたご群(Vg=34)、ペルセウス群(Vg=60) について出現点、消滅点と光度との関係を示したも のである。SonotaCoネットで出現点と消滅点の直線 がクロスしているが、SonotaCoネットのシステムで3 等級程度の流星が実質的な観測限界であることを示 している。両群ともにSonotaCoネットの方が消滅点 を低いところまで捉えていることは興味深い。流星 の検出方法の違いが表れているのかもしれない。ふ たご群では発光点もSonotaCoネットの方が高くから

第4図 : 地心速度による撮影光度の変化。1,000 個の移 動平均。

第5図;出現点、消滅点と流星光度との関係(最小二乗法による直線解)。ふたご群(a)、ペルセウス群(b)

捉えているが、第4回で見たように、基本的には CAMS の方が平均で 0.9 等級暗い流星まで捉えているのだか ら、常識的には CAMS の方が発光点を高くから捉えていてもよいはずである。このことからも、両者の流星 検出の方法の差異が伺われる。

(2)天候等の観測条件

第1図で、太陽黄経 70~120 度のあたりは SonotaCo ネットよりも CAMS の方が多くの流星を捉えている。 これは梅雨の影響が大きい。第2表でふたご群、ペルセウス群の比率が SonotaCo ネットよりも CAMS の方が 低くなっているのは、CAMS の観測が行われている 2011-12 年のうち 2011 年は両群ともに満月に近い悪条件 であったことが原因と考えられる。SonotaCo ネットは 2011-13 年の観測を使用しているために月齢の条件が緩 和されている。

(3)流星群の定義・群判定の方法の違い

SonotaCo ネットでは"ALL_SHOWER_NAMES"というファイルによって流星群が定義づけられている。第4 表に示すように、活動期間を示す太陽黄経の範囲、赤経・赤緯で表された輻射点、地心速度が基本である。最 下欄に示した、おうし南群(STA)は太陽黄経で178度(sol1)から275度(sol2)までの非常に長い活動期間を想定 している。

第4表: SonotaCo ネットで使用されている流星群の定義表"ALL_SHOWER_NAMES"の一部を示す。

_code	_name	_sol1	_sol2	_solp	_ra	_dec	_dra	_ddec	_vg	_R	_dv	_IAU#	_IAUcode
_J5_Cap	_Alpha Ca	114.2554	138.378	126.1396	305.7054	-9.42002	0.498843	0.260231	22.35723	6	3	_#1	CAP
_J5_Com	_Dec. Com	243.981	311.1886	265.6826	159.7097	31.57298	0.794832	-0.32215	62.9684	6	4	_#20	COM
_J5_etA	_Eta Aqua	34.74393	68.66069	46.28019	338.3489	-0.76604	0.621568	0.290403	65.36826	5	5	_#31	ETA
_J5_Leo	_Leonids	220.9246	247.1227	235.4331	153.9164	21.85383	0.559125	-0.39007	69.96555	4	7	_#13	LEO
_J5_Lyr	_April Lyri	24.26708	41.59422	32.53246	272.5742	33.17207	0.817925	-0.29445	46.66568	5	5	_#6	LYR
_J5_Ori	_Orionids	178.8869	234.0035	207.9266	95.45098	15.52253	0.609658	0.013442	66.21321	4	8	_#8	ORI
_J5_Per	_Perseids	119.0332	160.4565	139.2121	47.18002	57.70816	1.165757	0.189175	58.7264	5	20	_#7	PER
_J5_Qua	_Quadrant	276.4105	291.086	283.1022	229.9551	48.96732	0.148969	0.166294	39.96465	5	6	_#10	QUA
_J5_sdA	_South. De	118.0303	145.4059	129.7355	341.88	-16.1768	0.619841	0.263918	39.41088	4	4	_#5	SDA
_J5_sTa	_South. Ta	177.9942	275.2837	219.7113	50.07141	13.36862	0.726863	0.161376	27.22767	6	5	_#2	STA

これに対して CAMS では Jopek の $D_{\rm H}$ という軌道要素を元にして判定方法行われている。 $D_{\rm H}$ は以下に示すように、 $D_{\rm SH}$ の近日点距離の項を変形したもので、これと第6回に示すような軌道要素の分布密度を併用して、流星群の広がりを個別に判断している。さらには、赤経・赤緯による輻射点分布も併用して、おうし群などのANT 領域の流星群をかなり細かく分割している。ここには主観の入る余地がかなりある。

$$[D_{\rm SH}]^2 = (e_2 - e_1)^2 + (q_2 - q_1)^2 \qquad [D + \left(2\sin\frac{I_{21}}{2}\right)^2 + \left(\frac{e_2 + e_1}{2}\right)^2 \left(2\sin\frac{\Pi_{21}}{2}\right)^2$$

具体的にどのような仕様なのかは示されていない が、"CAMS StreamFinder"というソフトを用いている。 これによって、流星群の出現レベルが散在流星以下 になる裾野部分や極端なデータを除外し、散在流星 による見せかけの集合を流星群と誤認することが避 けられるとしている。

4. CAMS と sonotaCo ネットのデータにみるふたご 群とペルセウス群の違い

前章でみたように観測機材、条件、群判定の方法 等に違いがある CAMS と SonotaCo ネットのデータで、 流星群の見え方にどのような違いがあるのか、具体 的にふたご群とペルセウス群を取り上げて比べてみ ることにする。

第5表にふたご群とペルセウス群の諸要素につい ての統計量を示す。SonotaCoネットは前章で述べた ように"ALL_Shower_Names"で定義された範囲に 入っているが、CAMSには異常値が存在する。例え ば、 λ - λ s と β (太陽を中心とした黄道座標)をみると、

$$D_{\rm H}]^2 = (e_2 - e_1)^2 + \left(\frac{q_2 - q_1}{q_2 + q_1}\right)^2 + \left(2\sin\frac{I_{21}}{2}\right)^2 + \left(\frac{e_2 + e_1}{2}\right)^2 \left(2\sin\frac{\Pi_{21}}{2}\right)^2.$$

第6図: CAMS の軌道要素(軌道傾斜と近日点黄経)

Min (最小値) がそれぞれ 174.3 と-39.2、最大値がそれぞれ 305.6 と 61.0 である。Mean (平均値)、Median (中

第5表a:ふたご群の諸要素についての統計。各統計量の1行目はCAMS、2行目はSonotaCoネット。

	λ-λs	β	Sol long	H beg	H end	Max Mv (n	Vg	е	q	i	ω	Ω	1/a
Min	174.3	-39.2	243.2	85.3	54.1	-6.1	6.8	0.128	0.059	4.0	0.7	81.5	-1.792
	195.8	1.0	236.0	50.8	40.5	-5.5	18.6	0.604	0.038	2.4	301.2	236.0	-0.221
Max	305.6	61.0	269.8	117.6	114.4	5.0	65.9	1.148	0.829	148.0	338.8	269.7	1.602
	217.6	17.2	289.2	189.0	173.0	3.9	48.5	1.036	0.346	55.9	340.3	289.2	1.290
Mean	208.1	10.5	261.1	97.0	85.0	1.6	34.1	0.891	0.144	23.3	324.0	261.0	0.749
	208.1	10.4	261.4	94.5	80.9	0.5	34.0	0.890	0.145	23.0	324.2	261.4	0.754
SD	2.40	1.56	2.21	2.51	4.41	1.38	1.99	0.026	0.020	4.02	8.13	4.89	0.119
	1.37	1.35	3.07	4.52	7.09	1.00	1.85	0.023	0.019	3.49	2.53	3.07	0.105
Median	208.1	10.5	261.7	97.0	85.5	1.7	33.8	0.889	0.145	22.9	324.3	261.7	0.766
	208.1	10.5	261.8	94.5	82.2	0.5	33.9	0.890	0.145	22.9	324.3	261.8	0.763

第5表b:ペルセウス群の諸要素についての統計。各統計量の1行目はCAMS、2行目はSonotaCoネット。

	λ-λs	β	Sol long	H beg	H end	Max Mv (n	Vg	е	q	i	ω	Ω	1/a
Min	275.9	29.5	116.0	89.4	65.8	-6.5	53.4	0.609	0.819	97.9	126.8	116.0	-3.265
	274.0	30.6	109.8	57.1	45.7	-7.3	34.6	0.187	0.360	82.1	18.0	109.8	-0.909
Max	292.2	47.3	157.2	142.7	115.8	4.7	84.8	4.070	1.002	128.9	167.9	157.2	0.411
	292.5	43.3	170.2	160.8	133.1	3.6	69.8	1.817	1.003	128.1	171.8	170.2	1.407
Mean	283.4	38.6	137.9	111.5	97.6	0.3	59.5	0.993	0.947	113.1	150.3	137.9	0.009
	283.1	38.4	138.2	108.3	93.5	-0.2	59.0	0.948	0.947	113.0	149.9	138.2	0.058
SD	1.85	1.77	5.54	4.04	4.79	1.52	2.40	0.218	0.020	2.98	4.99	5.54	0.226
	1.83	1.53	5.73	4.15	6.07	1.12	1.98	0.123	0.031	2.89	8.22	5.73	0.143
Median	283.3	38.5	139.3	110.9	98.0	0.4	59.1	0.951	0.949	113.1	150.4	139.3	0.052
	283.0	38.5	139.3	108.2	94.4	-0.2	59.2	0.956	0.951	113.1	150.8	139.3	0.047

央値)と比べてみると、その異常さがわかる。公表されている軌道を入力する際に手作業でしたために起きた ミスなのか、ソフト上の欠陥なのか理由は不明である。

しかし、SD(標準偏差)を比べると、ふたご群についてもペルセウス群についても、両者がほぼ同一であることがわかる。これは両群のデータ数が多く(CAMS、SonotaCoネットの順にふたご群 5,064 個、11,804 個、ペルセウス群 8,161 個、9,437 個)、異常値が埋もれたためであり、また、両者の観測精度がほぼ同一であることを示していると考えられる。

前章(第5図)で述べたように、発光点・消滅点において CAMS と SonotaCo ネットには違いが見られ、第5表でも Hbeg(発光点)、Hend(消滅点)の SD は CAMS よりも SonotaCo ネットの方が大きくなっている。 輻射点、地心速度、さらには軌道要素に影響を及ぼさないのだから、基本的に観測経路の延長上で SonotaCo ネットは CAMS よりも、より高い(より低い)部分まで捉え(検出)しているのかもしれない。

最後にここで CAMS と SonotaCo ネットにおける流星群の定義の違いがどのように現れるか、出現期間と周 囲の小流星群の扱いを見ることにする。第7図のグラフで示されるように、極大前後の流星数の推移は CAMS と SonotaCo ネットでほぼ一致しているが、CAMS では散在流星に埋もれる期間を除外しているのに対して SonotaCo ネットでは定義される期間に規定された出現開始・終了の時期となっている。

第8回にペルセウス群の輻射点分布を示すが、CAMSでは散在流星または別群とされる期間、位置の流星が SonotaCoネットではペルセウス群と判定されていることがわかる。分布図の右下方向はApex(地球の軌道運動の進行方向)にあたり、CAMSのλs≥160の分布図に見られるように、右下方向に向けて輻射点が増加する 判定の難しい領域であることに注意が必要である。

第7図:資料自体が群流星と判定した観測流星数の出現分布。縦軸は対数による。

8

6

40

-10 +-8

-6

IAU549

+

-10 \perp +

10

+

SonotaCo

5. まとめ

CAMS は SonotaCo ネットよりも長焦点のレンズを使用しており、得られるデータはより高精度と推測され るが、今回のデータ比較で精度に関して大きな差異は認められなかった。しかし、SonotaCo ネットで低速の 流星数が CAMS に比べて少ないことには、レンズの焦点距離の違いが影響しているとみられる。また、消滅 点高度に差がみられるのは、流星像を自動検出するソフトの違いによるものと考えられる。

CAMSとSonotaCoネットで大きな違いがみられるのは、流星群の定義法である。前者は軌道要素、後者は 輻射点を基本にしており、この違いによって、流星群の出現期間、平均要素に違いを生じている。特にSonotaCo ネットの群判定においては、出現期間がかなり長く設定されていることに注意が必要である。また、小流星群 になると、どのように流星群を定義するかによって、存在の有無自体も相違してくることに留意しなければな らない。

<u>補注1</u>:第2表における_S26は以下のデータに基づいている。 Sirko Molau, 2008, "A NewAnalysis of the IMO Video Meteor Database", Proceeding of the International Meteor Conference, 76-90.

ID Period Maximum δ β Vel. Name α $\lambda - \lambda s$ _sm_026 87-127 101 15.3 23.5 282 23 70 N.Apex 補注2:輻射点分布図内において SonotaCo ネットで使用されている Iw XXX は IAUMDC の working list の流 星群で XXX にあたる略号は IAUMDC のものである。

63.2 275~290

×× ×

-5 -

-5

-10

5

10

5

241.9

"確定群"の中で輻射点の位置または極大時期が大きく異なるデータが存在するものについては次ページで補足する。

補足

ペルセウス群輻射点拡大撮影

重野好彦

2006年以降、ペルセウス群輻射点の拡大撮影を行っている。昨年との比較を紹介する。

撮影日時 2017年8月11/12日 22:00~04:00(現地標準時)(極大11:00) 21流星

- 観測地 ヨセミテ西
- 撮影機材 Nikon D500 4K(3840×2160) 30fps動画 1/30secシャッター ISO:5万 レンズ 85mm F1.4 (35mm版200mm相当) 写野11度×6度 恒星最微等級9.0等 流星最微等級7等 高橋P型+ビ クセンモードラ自動ガイド
- 昨年との 1) シャッター 1/125sec→1/30sec (露出時間を4倍にした)
- 違い 2) ISO: 10万→5万 (感度を下げたことで画質が改善された)
 3) 恒星最微等級7.5等→9.0等 (感度は1/2になったがシャッターが4倍になり、さらに画質の改善により最微等級が 暗くなったと思われる)
 - 4) 面積のある流星痕は感度が下がったためやや写りにくくなった

輻射点付近 の正三角形

図 1. 動画とほぼ同視野の星図(ステラナビゲータ) 最微等級9.0等 動画と較べてやや視野が回転している

図 2. 2016.08.11/12+12/13 16流星 1/125secシャッター ISO:10万 恒星最微等級7.5等

2017/10/1 147回流星物理セミナー

日本流星研究会 小関正広

1. はじめに

前回の MSS で「CAMS と SonotaCo ネットで得られたデータ」という発表をした。その後、いくつかの流星 群について、電波観測を含めた観測方法による見え方の比較を天文回報の詰草原稿として書いている。今回の 発表は秋から冬にかけての流星群について CAMS と SonotaCo ネットの見え方を比較したものである。

2. ηエリダヌス(ERI)群、vエリダヌス(NUE)群、オリオン群の尻尾?

Jenniskens らは CAMS の論文でオリオン群に連なる一連の流星活動を「オリオン群の尻尾」と名付けた。8 月から11月までの流星活動を単一の起源に帰するには無理があるだろうが、実際に輻射点分布を見ると(付 録の図を参照)、ERI から始まり、オリオン群に吸い込まれるように輻射点が移動していくように見える。 Jenniskens らは「オリオン群の尻尾」としている流星活動をオリオン群まで含めて全部で10の流星群に分割し ている(第1表)。

表1:オリオン群の尻尾とされる流星群。

IAU#	Object	Ν	R.A.	Dec.	λs	Vg	$\lambda - \lambda s$	β	e	q	i	ω	Ω	a
191	ERI	214	43.7	-11.9	137	64.5	260.3	-27.3	0.945	0.953	132.7	28.4	317.7	10.3
738	RER	24	44.8	-4.0	137	67.3	264.1	-20.1	0.945	0.988	145.7	18.7	316.7	8.94
337	NUE	291	61.5	+4.3	163	67.1	257.3	-16.2	0.916	0.867	150.7	43.7	53.2	7.04
552	PSO	99	70.5	-2.3	159	65.8	269.5	-24.3	0.893	1.004	138.3	17.2	342.4	7.53
225	SOR	40	87.9	+0.5	187	66.2	260.7	-22.9	0.919	0.934	139.7	30.6	9.6	9.70
479	SOO	40	80.9	+12.5	187	67.6	254.0	-10.7	0.911	0.777	159.9	57.6	7.7	8.11
718	XGM	33	96.9	+12.7	206	68.1	250.8	-10.6	0.952	0.726	159.9	60.8	26.3	5.78
8	ORI	3024	95.9	+15.7	209	66.3	246.7	-7.6	0.944	0.578	163.9	82.2	28.3	6.87
558	TSM	7	121.8	-5.8	227	64.6	258.5	-25.4	0.858	0.899	134.4	37.4	46.6	6.27
719	LGM	11	106.8	+17.5	232	60.6	234.1	-5.0	0.981	0.220	164.7	128.1	52.2	4.68

この中で ERI は大塚勝仁さんらが写真観測を端緒に、また、NUE は SonotaCo ネットで検出されたものであり、日本に縁があるので少し詳 しく見ていくことにする。

CAMS と SonotaCo ネットの観測を合成した(λ - λ s, β)=(260, -27)を中心 とした輻射点分布を示す(図1)。ERI の輻射点がよく集中しており、 太陽黄経 5 度幅の移動平均で示した流星活動の変化もはっきりとした 極大を示している(図2)。

これに対して、NUE は付録に示したように「オリオン群の尻尾」の 一部に過ぎず、独立した流星群ではないようにも見える。図中で CAMS による NUE(△)の位置は尻尾から少し外れているように思われ、CAMS が NUE と判定した流星数の変化を太陽黄経 5 度幅の移動平均で示した もの(図3)を見ても明確な極大は見られない。これに対して、SonotaCo ネットの観測では明確な極大が表れる。これは、両者における NUE の 判定基準が異なるためである。

例として(λ - λ s, β)=(259, -19)を中心とした SonotaCo ネットによる輻射 点分布を示す(図 4)。中心右上に散在と判定された流星があるが、この 位置は CAMS では NUE とされている。SonotaCo ネットの判定では散 在とされている NUE の左下に連なる流星は CAMS では NUE に近い側 から ERI、PSO とされている。(λ - λ s, β)=(259, -19)から 5 度以内に入る NUE と判定されている流星だけに限っても、また、5 度以内に入る散 在流星を含めた流星数の変化を調べても CAMS では極大が明確でない。 NUE は「オリオン群の尻尾」の一部の中で少しだけ周囲より流星活動 が盛んな部分とみられ、大量のデータを慎重に分析しなければ、輻射点 の位置(移動)、極大といった基本的な数値すら明確にするのは容易で はない。しかし、これでも IAUMDC では確定群に位置付けられている。

この後、「オリオン群の尻尾」はオリオン群本体に接するようになり (付録右下の図)、479SOO(9月oオリオン群)と名付けられた流星群が 設定されている。オリオン群とSOO との分離が困難なことからわかる ように、オリオン群の初期活動がいつから始まるのかは不明確と言わざ るを得ない。同様にオリオン群の活動末期の活動についても散在流星・ 「オリオン群の尻尾」の活動によって判断は分かれている。

図 1 : ERI の輻射点分布。

図 2: ERI の活動変化。

3. おうし南群と北群

写真観測された流星数の太陽黄経で5度ずつの移動平均とSonotaCo ネットで撮影された流星数の変化はよく似ている(図5a、b)。南側の 活動は太陽黄経で200度付近と220度付近の2つの極大をもち、北側の 活動は太陽黄経で230度付近に単一の極大をもっている。

これに対して、CAMS で STA また NTA と判定された流星数の変化は 極めて特異である。STA は複数の極大を持つように見え(図6a)、NTA では SonotaCo ネットまた写真観測での極大に当たる部分は凹部になり、 その後に二次的な極大をもっている(図6b)。これは「おうし群」の 活動がそのように変化するのではなく、CAMSの群判定が特殊だから である。

CAMS による STA の平均軌道に対して $D_{SH}<0.2$ になる流星群は CAMS 中だけで次のものがある: 626LCT0(0.026), 628STS0(0.082), 637FTR0(0.087), 624XAR0(0.097), 625LTA0(0.114), 630TAR0(0.172), 28SOA1(0.176), 631DAT0(0.176), 25NOA1(0.184)。同様に NTA に対して は:630TAR0(0.030), 631DAT0(0.064), 632NET0(0.090), 25NOA1(0.103), 635ATU0(0.108), 629ATS0(0.129), 637FTR0(0.145), 628STS0(0.149), 633PTS0(0.164), 625LTA0(0.168), 626LCT0(0.183) がある。さらに、 215NPI4、216SPI4、256ORN2、257ORS3、286FTA1 も輻射点分布では 「おうし群」と重なり合う。CAMS による STA と NTA の流星数変化 は、これらの CAMS が定義する別群をそぎ落とした残りである。

 $(\lambda - \lambda s, \beta) = (190, 0)$ を中心とした CAMS による輻射点分布(図7)を見 ると、STA また NTA と別群(この場合、STA には 625LTA、NTA には 629ATS)が重なっている。この分布と流星数の変動を見れば、CAMS の群判定の在り方にはいささかの無理があるといえる。

CAMS が「おうし群」を分割するのに対して、CMOR は黄道型群を 結合しようという方向で(●が SIA○が STA)、活動は連続しているの ではないかという提起をしている。STA と NTA の区別はあるものの、 CAMS のようには「おうし群」を分割していない。CMOR のまとめの 表では図と異なり、活動期間を太陽黄経で 172~217 度、極大を 196 度 としている。おうし群とは何か。謎は多い。

図 4:NUEの輻射点分布(SonotaCo)。

図 5b: SonotaCo ネットの流星数。

図 6b:NTA の流星数。

4. しし群

前回の大出現時には組織的な写真観測はアマチュアが行っただけで あり、ビデオ観測は CCD ではなく、II が用いられており観測数は少な い。また、CMORの観測はまだ始まっていない。このような中で、1998 年に NMS が中心となって実施された写真観測、また、2001 年に行われ た重野による Ⅱ 観測は貴重である。輻射点分布を見ると、極めて狭い 範囲に集中していることがわかる。

CAMS ではしし群をあまり捉えていないが、2011年11月18日及び 2012年11月17-18日の観測がほとんどない(欠測)ためであり、観測 条件に恵まれているとみられるカリフォルニアであっても 2 年程度の 期間では、流星群の活動状況を把握するには不十分であることが示され る。33 年という長い年月を同じシステムで観測することは不可能と いっても過言ではなく、しし群の全体像はまだつかめていないのが実情 である。

図 9: 重野によるしし群のⅡ観測。

図 11:村上先生によるしし群の活動 サイクル。

5. ふたご群

語っている。

全ての観測方法ではっきりととらえられている流星群は多くない。し かし、それでもふたご群の全貌を捉えるには十分とは言えない。CAMS と SonotaCo ネットの観測について撮影された流星数を年毎に見るとグ ラフは「櫛型」になる。流星数の変動を知るだけであれば、輻射点高度 の補正によって、それらしいグラフを得ることはできる。しかし、流星 群の構造を捉えるために、極大と前後の流星体の違いを調べたりするに は2~3年の観測では足りないことが分かる。このグラフでSonotaCoネッ トの2012年の観測はふたご群の極大に遭遇していると考えられるが、 CAMS の 2011 年の観測は極大から微妙に外れている。このことは SonotaCo ネットが CAMS に比べて多数のふたご群を撮影できた原因の 一つと言える。

地球の公転周期に約0.25日の端数がつくために1年ごとに同一地点 で観測できる流星群の位置は太陽黄経で 0.25 度ずつずれる。流星群の 全体像をつかむには4年かかるというのは、眼視観測だけではない、電 波観測、写真観測でも同様である。このことを忘れて、電波観測、写真 観測の結果に重きを置くことは誤りである。IAUMDC が記載する流星 群の平均太陽黄経を流星群の極大そのものと考えることはできない。流 星観測団体の多くでは、長年の眼視観測によって求められた極大の太陽 黄経を用いている。月の巡りを考えれば12年、天候条件を考慮すれば さらに長期間の観測に拠らなければ詳しいことはわからないのである。

図 13: SonotaCo net10 年の観測。

SonotaCo ネットの 2007-16 年の全観測を用いてふたご群の流星数の変化をグラフにしたものを見ると、これ でもグラフに凹凸がみられる。一部は実際の変動、一部は観測条件の違い(悪天候による観測数減少)による。 しかし、まったく同じではないにせよ、同じようなシステムで 10 年間観測が続けられたことにより、ほぼふ たご群の全体像を明らかにできているということは大きな成果である。

ふたご群に関して CAMS の観測は不思議な「発見」をしている。ふたごの輻射点分布にまったく重なるよ うな 641DRG (12月pふたご群) が活動していると指摘している。DRG がふたご群と区別されるという彼らの

図 14: CAMS による GEM と DRG。

主張は、引用したものからも分かるように極めて単純な根拠に基づいている。速度分布のグラフは彼らの主張 を裏付けるものとは到底言えない。おうし群同様、CAMSの流星群の定義は主観的と言わざるを得ない。

As a final curiosity, a group of unusual Geminids was found to have relatively high ~39.5 km/s entry speed (7σ above the median 33.8 km/s of other Geminids) and a resulting high i ~ 28° and semi-major axis a ~ 1.5–3.0 AU (Fig. 11). Based on the medium measurement error, we expected only 3 such outliers. These are here called here the December ρ -Geminids (#641, DRG).

6. しぶんぎ群と 12 月αりゅう群(DAD)

SonotaCo ネットのデータでしぶんぎ群を考えるときには、12月αりゅう群(DAD)との関係に触れる必要がある。DAD は SonotaCo ネットの 2007-08 年の観測で指摘されたものであり、CAMS のデータでもその存在は確認されている。しかし、両者の結果には大きな違いがある。

SonotaCo ネットと CAMS のデータで DAD の統計量を見てみよう。まず、活動時期だが、太陽黄経の平均

H end Max Mv (m Vg $\lambda - \lambda s$ Sol long H beg Min 249.1 59.3 94.1 37.5 0.493 0.950 66.3 165.0 248.8 0.147 248.8 82.7 -1.0 237.3 52.8 227.0 82.1 55.8 33.5 0.194 0.902 58.2 133.5 227.0 -0.298 -3.2 Max 282.1 65.9 262.6 108.3 102.9 4.0 43.4 0.857 0.986 77.4 202.7 262.6 0.515 299.2 72.5 288.1 116.4 103.9 3.4 49.0 1.293 0.990 87.8 217.4 288.1 0.858 0.379 Mean 270.9 100.4 40.9 0.628 0.980 72.3 179.5 255.3 62.7 255.4 89.9 1.8 266.0 63.3 267.4 98.8 87.6 0.6 413 0.691 0 975 719 184 5 267.4 0 317 SD 7.57 1.47 3.79 3.93 4.81 1.16 1.45 0.081 0.006 2.37 8.98 3.79 0.082 10.19 3.34 16.25 4.69 6.32 1.09 3.10 0.153 0.013 5.16 11.69 16.25 0.157 Median 273.0 62.9 254.8 100.1 88.8 2.1 40.9 0.606 0.982 71.9 177.1 254.8 0 4 0 1 267.6 63.4 270.6 98.4 87.9 0.7 40.9 0.653 0.981 71.7 183.2 270.6 0.354

表 2: DAD の統計量。表の意味については表1についての説明を参照。

または中央値のいずれも 10 度以上違っている。一般的に、同一の流星 群であれば、このような大きな差異を生じることはない。活動期間も SonotaCo ネットでは太陽黄経で 227.0~288.1、CAMS では 248.8~262.6 と大きな違いがみられる。

DAD と判定された流星数の変化を図 16 に示す。ここでは、太陽黄経の順番に並べた DAD の流星 7 個ごとの太陽黄経の差 $\Delta\lambda$ s を用いて N=7/ $\Delta\lambda$ s によって移動平均を算出している。これは CAMS では DAD の 数が少ないために太陽黄経 1 度毎では流星数の変動を見にくいためで ある。太陽黄経 1 度あたり DAD と判定されている流星数を表している

ことになるが、図中の縦軸は左側 が CAMS、右側が SonotaCo ネット に対応している。

DAD と判定された流星の平均太 陽黄経は CAMS で 255.4、SonotaCo ネットで 267.4 であるが、太陽黄経 は 267.4 付近では DAD と判定され る流星はほとんどないことがわか る。CAMS による太陽黄経 255 度 付近で CAMS の流星数が極大を迎

図 17 : DAD の輻射点分布。SonotaCo net(左;a)、CAMS(右;b)。

えるのは当然であり、SonotaCo ネットでも流星数の増加がみられる。

太陽黄経 250~255 度における輻射点分布を見てみよう(図 17a, b)。中央やや左に見られる塗りつぶした菱形 が DAD であり、右側の三角形はやはり SonotaCo ネットによって見出された 12 月 kりゅう群(DKD、SonotaCo ネットでは kDr)である。SonotaCo ネット、CAMS ともに DAD は DKD よりも弱い活動であることがわかる。 また、a、b の図を比較すると、SonotaCo ネットで CAMS よりも DAD の数が多くなっているのは、CAMS が 散在と判定している範囲まで DAD を拡張していることも一因であることが分かる。。

しかし、さらに注目すべきは、SonotaCo ネットでは、太陽黄経 267.4 以降に DAD と判定される流星数は増加し、太陽黄経 283 度付近で著し い増加を示している。太陽黄経 280~285 におけるしぶんぎ群の輻射点 分布を図 18a、b に示す。CAMS と SonotaCo ネットで全体的にはよく似 た分布であるが CAMS でしぶんぎ群と判定されている領域(図の右側) を、SonotaCo ネットの判定では DAD (この図中では三角形)が占めて いることがわかる。このことから、SonotaCo ネットの判定では DAD の 活動期間を長く取り過ぎたことによって、しぶんぎ群との混同が起きて いると考えられる。

このことを両者でしぶんぎ群と判定された流星数の太陽黄経 1 度あ たりの移動平均で見てみよう。ここでは流星数が多いので流星数 15 個 ごとの平均を DAD の場合同様に求めている。極大付近で SonotaCo ネッ トでしぶんぎ群と判定された流星数が CAMS のものより明らかに少な いことがわかる。従って、しぶんぎ群また DAD のデータを考察するに は SonotaCo ネットのデータを再判定する必要がある。太陽黄経 265 度 以前を DAD、以後をしぶんぎ群とみなすことが妥当であろう。

CMOR では、しぶんぎ群はトロイダル活動の一部とみなされており、 背景となる散在流星の数をは多い。軌道が似ている、輻射点移動経路の 延長上に位置するということだけで群流星と判断し、しぶんぎ群の活動 期間を長く取り過ぎると大きな問題を生じる。

図 18: QUA と DAD の輻射点分布。 SonotaCo net(上;a)、CAMS(下;b)。

図 19: しぶんぎ群と判定された流星数の変化。

7. おわりに

この他にも秋から冬にかけての流星群には、うみへび群、いっかくじゅう群(と 11 月オリオン群)、12 月 こじし群(かみのけ群)等もあるが、これらについては天文回報誌上でいずれ CAMS と SonotaCo ネットだけ ではなく、いろいろな観測によって見え方がどのように違うか解説する予定である。

ふたご群、オリオン群、しし群といった大流星群であっても、まだまだ知られていないこと、観測の届かないところがある。それらよりも活動の低い流星群になれば、どのようにその流星群を定義するか(活動期間、輻射点の範囲等々)が観測者、研究者によって異なっているために様々な混乱がある。本報告では、それらの問題点を明らかにして、今後の観測・研究課題を提示したつもりである。

・継続は力なり:2年、3年の観測では一部しかわからない。同じ方法で観測を続けることが解決の道。

・疑問があれば調べる:研究結果を鵜呑みにしないで、自分の目と手で元データを確認する。

付録:オリオン群の尻尾

上段左→右、中段、下段の順に太陽黄経 20 度ずつ重ねて(λ-λs, β)=(254, -18)を中心とした輻射点分布を示す。

$\begin{array}{c} 10 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	x x x 10 x x x x 10 x x x x x x x x x x x x x x x x x x x
10	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
$\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	10, 5, 5, 10, 5, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	10, + , × × × × × × × × × × × × × × × × ×
10,	10	-10 -10 * * * * * * * * * * * * * * * * * * *
ふたご群輻射点拡大撮影

重野好彦

撮影日時 2017年12月13/14日 23:00~06:00(JST)(極大14日15:00) 21流星

- 観測地 秩父郡
- 撮影機材 Nikon D500 4K(3840×2160) 30fps動画 1/30secシャッター IS0:5万 レンズ 85mm F1.4 (35mm版200mm相当) 写野11度×6度 恒星最微等級9等 流星最微等級7等 高橋P型+ビクセンモードラ自動ガイド

図1. 輻射点付近の星図(ステラナビゲータ) 最微等級8.5等 +印は1999.12.13/14ビデオ同時観測輻射点

図2. 2017.12.13/14 21流星

ペルセウス群の場合は、流星最微7等まで全ての流星に短痕が見られた。ふたご群の場合は、 まれに流星最微7等まで短痕が見られる。

1. はじめに

SonotaCo ネットが 10 年間の観測を継続し、その結果を公表している。これは大きく称えるべきことである。 CAMS や EDMONd といったビデオ観測のデータは一部を除いて外部の利用は不可である。CAMS や EDMONd のグループが SonotaCo ネットのデータを自由に用いているのに対して不公平だとの感は否めない。しかし、 SonotaCo ネットのメンバーでない筆者もデータ公開の恩恵に預かっているのだから、SonotaCo ネットの流星 天文学に対する貢献を大いに称賛したい。

IAUMDCの"確定群"についての問題はたびたび取り上げているが、今回は SonotaCo ネット 10 年間の観 測を通して"確定群"の実態を見ていくことにする。

2. "確定群"の実態

No Code	Name	No	Code	Name		Code	Name	No	Code	Name	
1 CAP	alpha Capricornids	96	NCC	Northern delta Cancrids		AUR	Aurigids	337	NUE	nu Eridanids	
2 STA	Southern Taurids	97	SCC	Southern delta Cancrids	208	SPE	September epsilon Perseids	338	OER	omicron Eridanids	
4 GEM	Geminids	100	XSA	Daytime xi Sagittariids	212	KLE	Daytime kappa Leonids	339	PSU	psi Ursae Majorids	
5 SDA	Southern delta Aquariids	102	ACE	alpha Centaurids	221	DSX	Daytime Sextantids	341	XUM	January xi Ursae Majorids	
6 LYR	April Lyrids	110	AAN	alpha Antliids	233	OCC	October Capricornids	343	HVI	h Virginids	
7 PER	Perseids	128	MKA	Daytime kappa Aquariids	242	XDR	xi Draconids	346	XHE	x Herculids	
8 ORI	Orionids	137	PPU	pi Puppids	246	AMO	alpha Monocerotids	348	ARC	April rho Cygnids	
9 DRA	October Draconids	144	APS	Daytime April Piscids	250	NOO	November Orionids	362	JMC	June mu Cassiopeiids	
10 QUA	Quadrantids	145	ELY	eta Lyrids	252	ALY	alpha Lyncids	372	PPS	phi Piscids	
11 EVI	eta Virginids	151	EAU	epsilon Aquilids	254	PHO	Phoenicids	388	CTA	chi Taurids	
12 KCG	kappa Cygnids	152	NOC	Northern Daytime omega Cetids	257	ORS	Southern chi Orionids	390	THA	November theta Aurigids	
13 LEO	Leonids	153	OCE	Southern Daytime omega Cetids	281	OCT	October Camelopardalids	404	GUM	gamma Ursae Minorids	
15 URS	Ursids	156	SMA	Southern Daytime May Arietids	319	JLE	January Leonids	411	CAN	c Andromedids	
16 HYD	sigma Hydrids	164	NZC	Northern June Aquilids	320	OSE	omega Serpentids	427	FED	February eta Draconids	
17 NTA	Northern Taurids	165	SZC	Southern June Aquilids	321	TCB	theta Coronae Borealids	428	DSV	December sigma Virginids	
18 AND	Andromedids	170	JBO	June Bootids	322	LBO	lambda Bootids	431	JIP	June iota Pegasids	
19 MON	December Monocerotids	171	ARI	Daytime Arietids	323	XCB	xi Coronae Borealids	445	KUM	kappa Ursae Majorids	
20 COM	Comae Berenicids	172	ZPE	Daytime zeta Perseids	324	EPR	epsilon Perseids	446	DPC	December phi Cassiopeiids	
21 AVB	alpha Virginids	173	BTA	Daytime beta Taurids	325	DLT	Daytime lambda Taurids	506	FEV	February epsilon Virginids	
22 LMI	Leonis Minorids	175	JPE	July Pegasids	326	EPG	epsilon Pegasids	510	JRC	June rho Cygnids	
23 EGE	epsilon Geminids	183	PAU	Piscis Austrinids	327	BEQ	beta Equuleids	512	RPU	rho Puppids	
26 NDA	Northern delta Aquariids	184	GDR	July gamma Draconids	328	ALA	alpha Lacertids	524	LUM	lambda Ursae Majorids	
27 KSE	kappa Serpentids	187	PCA	psi Cassiopeiids	330	SSE	sigma Serpentids	526	SLD	Southern lambda Draconids	
31 ETA	eta Aquariids	188	XRI	Daytime xi Orionids	331	AHY	alpha Hydrids	529	EHY	eta Hydrids	
33 NIA	Northern iota Aquariids	191	ERI	eta Eridanids	333	OCU	October Ursae Majorids	530	ECV	eta Corvids	
61 TAH	tau Herculids	197	AUD	August Draconids	334	DAD	December alpha Draconids	533	JXA	July xi Arietids	
63 COR	Corvids	198	BHY	beta Hydrusids	335	XVI	December chi Virginids	549	FAN	49 Andromedids	
69 SSG	Southern mu Sagittariids	202	ZCA	Daytime zeta Cancrids	336	DKD	December kappa Draconids	569	OHY	omicron Hydrids	
Total: 112 est	ablished showers.										

(1) "確定群"の分類

見え方という観点から次の6類に分けて考えることにする。

基本群:ほぼすべての観測方法によって捉えられているもの:23群。

CAP, STA, GEM, SDA, LYR, PER, ORI, QUA, LEO, URS, NTA, MON, NDA, ETA, ARI, DSX, NOO, JLE, AHY, PPS, CTA, THA, GUM

光学群:電波観測によっては明瞭にとらえることが出来ないもの:40群。

EVI, KCG, HYD, COM, LMI, EGE, ELY, JPE, GDR, ERI, AUR, SPE, AMO, ORS, OCT, OCU, DAD, XVI, DKD, NUE, OER, PSU, XUM, HVI, XHE, CAN, FED, DSV, JIP, KUM, DPC, FEV, JRC, LUM, SLD, EHY, ECV, JXA, FAN, OHY

電波群:光学観測によっては明瞭(下線のものは曖昧)にとらえることが出来ないもの:12群。

AAN, NZC, SZC, XDR, OSE, TCB, LBO, XCB, EPG, BEQ, ALA, SSE

史的群・周期群:過去に突発が捉えられた歴史的な群、または、活動の変動が大きいもの:7群。 DRA, AND, TAH, COR, PPU, JBO, PHO

昼間群・南天群:北半球の光学観測では観測不能または困難なもの:15群。

XSA, MKA, APS, ACE, NOC, OCE, SMA, ZPE, BTA, XRI, BHY, ZCA, KLE, EPR, DLT

不詳群:光学観測はあっても、SonotaCoネットの観測で明確には認められないもの:15群。

AVB, KSE, NIA, SSG, NCC, SCC, EAU, PAU, PCA, AUD, OCC, ALY, ARC, JMC, RPU

もちろん、分類の境界は曖昧であり、電波群のNZC、XCB などは、基本群との境界上にある。厳密な分類 よりも、"確定群"という名称からは、「すべての観測方法によって捉えられている」と考えられがちである が、そのような基本群は全体のほぼ 1/5 であるという点を強調しておきたい。

(2)基本群

「すべての観測方法によって捉えられている」といっても、PERのように光学観測の方が電波観測よりも活発な活動がみられるものもある。両方で同じように見えているわけではない。また、PER、GEMのように非常に出現数の多いものもあれば、THA、GUMのように眼視観測ではまず捉えることが困難な極小流星群もあ

る。以下に 10 年間の SonotaCo ネットの観測によって GEM、URS、GUM の輻射点分布を示す。各図の下部に 4GEM3、SonotaCo、208.1、10.4、255~270 のように基本データを示した。これは IAUMDC の No.4 が GEM で あり、その中で 4 番目(3 という数字は IAUMDC では最上位に表示されるものを 0 としているためである)に SonotaCo ネットのデータが示され、(λ-λs, β)という黄道座標で(208.1, 10.4)が輻射点の中心であり、極大を挟ん で太陽黄経 255~270 度の輻射点を表示したものであることを表している。10 年間の蓄積により極めて大量の データが得られていることが分かる。ここでは輻射点の広がりの問題には触れずに、他の群を見ていくことに する。中央は URS である。「史的群・周期群」とも言えるが、近年小規模の突発が繰り返されて、光学的に も電波によっても捉えられている。小流星群の例と言える。右は GUM という群でなじみがないが、CMOR の 電波観測で見出されて以降、光学的にも捉えられている。10 年間の蓄積でこの程度のデータであるから、眼 視観測ではまず気付くことはできない極小流星群である。

(3)光学群

眼視観測では存在が示唆される程度、写真観測でも小流星群としか考えられていなかった流星群の中に CCD 観測によって主要流星群に匹敵するほどの活動を示すものが見出されてきた。その後、SonotaCo ネット またそれに続く CAMS 等の活動により、非常に多くの流星活動が見出されている。これらの多くは眼視観測 ではほぼ知られていなかったものである。観測機器の特性から、高速で明るい流星の割合が高い流星群と考え られる。COM がこれほど多く捉えられているのに、眼視観測では貧弱な出現しか見られないことから、それ よりも活動の低い群を眼視観測で捉えることは困難と考えられる。近年では OCU よりもさらに出現数の少な い活動が CCD 観測によって<流星群>として多数報告されている。

(4)電波群

実は電波群といっても、電波観測の中だけでも一致する流星群を見出すことは困難である。これが電波観測の数だけ群判定基準があることによるのか、微小な流星体の領域では流星活動の変動が激しく年毎に活動する 流星群が異なるのか、あるいはほかの原因があるのかよく分かっていない。

ここでは IAUMDC で重用されている CMOR の観測を例にとる。もちろん、CMOR の観測で基本群も捉えられているし、'working list'のままのものもある。 "確定群"とされている中で、CMOR の観測が筆頭(各流 星群の先頭に掲げられている)とされているものだけを取り上げる。

表中で LaSun は極大時の太陽黄経、N は帰属流星数である。(λ - λ s, β)でβが大きいものはトロイダル、 λ - λ s が 300 よりも大きいものは昼間群と考えてよい。

	shower name	Ra	De	Vg	LaSun	λ-λs	β	e	q	inc	peri	node	a	Ν
319JLE0	January Leonids	148.3	23.9	52.7	282.5	220.3	10.4	0.9913	0.055	109.3	333.7	282	6.3	138
3200SE0	omega Serpentids	242.7	0.5	38.9	275.5	324.6	21.2	0.88	0.164	56.5	38.8	275.9	1.37	60
321TCB0	theta Coronae Borealids	232.3	35.8	38.66	296.5	279.2	52.4	0.1662	0.924	77	124.9	296.5	1.108	1123
322LBO0	lambda Bootids	219.6	43.2	41.75	295.5	259.9	54.4	0.3579	0.956	79.3	206.6	295.4	1.49	354
323XCB0	xi Coronae Borealids	244.8	31.1	44.25	294.5	299.7	51.5	0.6509	0.817	79.6	124.7	294.5	2.34	185
324EPR0	epsilon Perseids	58.2	37.9	44.8	95.5	328.2	17.3	0.9714	0.13	63	39.7	96	4.55	203
325DLT0	Daytime lambda Taurids	56.7	11.5	36.4	85.5	331.6	-8.2	0.9337	0.104	23.2	210.8	1.7	1.57	406
326EPG0	epsilon Pegasids	326.3	14.7	29.9	105.5	228.9	26.5	0.7711	0.173	55.4	334.9	105.2	0.757	65
327BEQ0	beta Equuleids	321.5	8.7	31.6	106.5	220.7	22.6	0.8164	0.163	49.7	330.3	106.2	0.887	89
328ALA0	alpha Lacertids	343	49.6	38.9	105.5	266.5	50.7	0.0799	1.002	81.1	217.1	105.3	1.089	66
330SSE0	sigma Serpentids	242.8	-0.1	42.3	275.5	324.9	20.6	0.9168	0.16	64	41.3	275.9	1.92	540
331AHY0	alpha Hydrids	127.6	-7.9	43.6	285.5	207.3	-26.0	0.9774	0.287	57.1	115.6	105	12.7	193

後者のうち、光学観測が困難な EPR、DLT、SSE を除いた輻射点分布を示す。

-10

-10 -

-10

JLE、XCB、AHYを除いては、光学的に確認できないことがわかる。表中で CAMS と記したものは CAMS で確認したとしているが SonotaCo ネットの観測からは確認できない。

特に TCB は流星数が表中で最も多いが、SonotaCo ネットの観測では、ほぼ背景の散在流星の活動に埋もれている。TCB はトロイダル活動の典型である。トロイダル全般を散在流星とみなすこともできるが、CMOR によってトロイダルの活動に1年間の間に大きな変動があることが見出され、それらを分割して<流星群>としている。

(5)史的群・周期群

代表的な例は Hoffmeister が記録した COR だが、これはその後観測されていない。Jenniskens は CAMS の観 測から Hoffmeister の輻射点からかなり離れた位置に活動を認めたとしているが、SonotaCo ネットの観測では どちらについても輻射点の集中は認められない。地球背後から衝突する型であり、輻射点が拡散して D 判定 でならある程度の活動を検出することが出来るかもしれないが、少なくとも輻射点分布からは存在を確認でき ない。PPU も南半球の眼視観測だけに基づいており、状況はよく似ている。

DRA は広く知られているように、流星群の軌道が地球と遭遇すれば、光学観測でも電波観測でも捉えられる基本群である。2007~2016年の SonotaCo ネットの観測は出現期から外れているので、この位置づけになる。

AND は指摘されている場所に輻射点の弱い集中がみられるが、これが歴史的なアンドロメダ流星雨と直接 関係するか明らかではない。IAUMDC には COR のような歴史的観測は掲載されていない。

TAH と JBO の状況は似ている。いずれも 20 世紀前半に彗星からの流星出現が予報され、それに対応する眼 視観測が得られた。その後、TAH は写真観測を用いた D 判定によって関連するとみられる流星の出現が認め られた。しかし、写真観測でもビデオ観測でも輻射点は極めて拡散しており、輻射点分布から確認することは できない。一方、JBO はその後の軌道変化によって、流星体と地球軌道の接近が予報され、それに応じた弱い 出現が認められている。

PHO は 1956 年の観測後、2014 年に出現が予報され、観測されているが、IAUMDC に掲載されている輻射 点は 1956 年のものであり、2014 年の輻射点とは遠く離れている。図中で原点付近と縦軸上で-4 付近の 2 つの 輻射点が 2014 年に捉えられたものである。

最新の IAUMDC の'working list'には CAMS が展開しているニュージーランドでの観測と思われる日本から では観測できない赤緯のものが含まれている。また、昼間群の光学観測は無理であるので、今後、この分類に 入る流星群は増加する可能性が高い。

(7)不詳群

不詳群とは"不確定群"という意味でもあるので、個々の説明を簡単にしておこう。AVB は σ -Leonids というくくりの中に入れられたこともあり、非常に漠然としている。KSE は Harvard の写真観測によって指摘されたが、突発なのか、偶然の集団なのか不明である。NIA は"確定群"から格下げされた SIA とともに Harvard の写真観測で検出されたもので、不詳群の中ではよく名前の知られた<流星群>である。SSG は眼視観測以来、黄道群として知られていた<いて群>を写真観測から固定化したものである。NCC と SCC は黄道群であり、南北に分離できるかも含めて曖昧な存在である。EAU は Harvard の電波観測を取り上げたもので、CAMS で確認したとしているが、不確実である。PAU は南半球の眼視観測で指摘されていたが、SDA の南側に位置しており、分離は不確実である。PCA は Harvard と CMOR の電波観測、また、CAMS でも捉えられているが、SonotaCo ネットでは確認できない。AUD は KCG に接しており、特に CAMS の KCG とは分離しがたい。OCC は地球背点に近く、IAUMDC で掲載している 3 つの資料の根拠はほぼ 1 件の眼視観測報告である。ALY は IAUMDC で 2 件のデータを載せているが、1 件は出典不明である。ARC は CMOR の電波観測を取り上げたもので、IMO

のビデオ観測と CAMS で確認したとしているが、不確実である。RPU は CAMS と Segon らのビデオ観測によるが、両者にはかなりの不一致がある。

□51EAUI CAMS 238.1 41.3 55-70 183PAU2 SonotaCo 212.0 -15.8 125-140 187PCA2 CAMS 306.6 53.2 110-125 このような問題を生じる原因はいくつかある。第一には、写真観測時代に行われた研究の権威を尊重したことである。写真観測は現代のビデオ観測に比べてはるかにデータ数が少なく、その中で似た輻射点、軌道を持つものを<流星群>と称したのである。そして、その研究を尊重したことをいまだに引きずり続けている。第二には、研究者・グループへの外交的配慮(忖度)が入り込んでいることである。あちらとこちらのバランスをとるという、科学的とは言えない扱いがある。第三としては、散在流星や他の流星活動との区別について明確な規定がないことである。活動の変動も考えられるが、いずれも"確定群"と呼ぶには当たらないだろう。

3. 'working list'の中で注目される<流星群>

"確定群"の中にも不詳群がある一方で、現在は'working list'に含まれているが、SonotaCo ネットの観測で 輻射点の集中が明瞭なものもある:TPY、ASX、ZCS。

昨年の NMS 同報上で取り上げられた、「崩れる流星」を主とした流星群が IAUMDC に登録された。最後

に新しく登録される<流星群>の例として見ておこう。最初に注目されたのは群の活動ではなく、流星の外観であった。既に動画は削除されているが、痕が拡散していく様子は極めて印象的であった。その後、SonotaCoネットのフォーラムで検討が進められ、合計4個の流星を同一群として IAUMDC に申請し受理されたものである。

右図で黒い菱形が 2017 年の観測、×は 2007~2016 年の観測である。 恐らく、特異な外観に注目が集まらなければ<流星群>の存在は気付かれなかったものと思われる。

4. まとめ

電波、ビデオそれぞれの特性があり、また、活動の変動を考慮すれば、 毎年、眼視観測で捉えられる可能性がある流星群(これを確定群と呼び たい)は 20 群程度であろう。

