-----PHA による輻射点推算と軌道が判明している 20 個の隕石のデータ比較

2014/10/5 流星物理セミナー 日本流星研究会 小関正広

1. はじめに

前回の発表「太陽をかすめる彗星と流星」(流星物理セミナー、2014/7/6)」で用いたのと同じ手法で PHA (Potentially Hazardous Asteroid)1458 個 (データをダウンロードした 2014/3/7 時点、2014/9/4 では 1497 個になっている) について流星の出現予想を試みた。小惑星から流星群が発生するとは考えにくいが、2008 TC3 のように小惑星と隕石との関係は密接である。そこで、小惑星(PHA)の予想輻射点から、隕石がいつ落ちる可能性が高いのかを実際の隕石データと比較し、検討することにした。

2. 隕石落下のデータ

LPI (Lunar and Planetary Institute)の'Meteoritical Bulletin Data Base'、<u>http://www.lpi.usra.edu/meteor/metbull.php</u>の検索によって、落下日時が判明しているもののリストを作成した。8月30日時点で名前が付けられ、登録 されている 49591 個の隕石中、落下時刻が月まで判明しているもの 360 個、時間帯までわかっているものが 116 個である。このデータベースの関心は隕石本体にあって、落下の状況については詳しく記されていない。 Grimsby 隕石についての論文(付録の文献(15)参照)には、軌道の判明している(何らかの機器によって測定 されている)隕石が 15 個掲げられているので、Grimsby 隕石より後のものについては上記のデータベースを 援用して文献を調査した。これによると、2014/9/4 現在で軌道が測定されている隕石は 20 個ということにな る。付録にはそれに加えて、小惑星として観測された後に大西洋に落下した 2014AA のデータも付け加えてい る。

第1表:月別落下数とPHAからの流星出現予測

Month	1	2	3	4	5	6	7	8	9	10	11	12
Witnessed	24	<u>32</u>	29	<u>31</u>	25	29	41	28	32	<u>39</u>	23	24
Observed	4	4	1	5	1	0	1	0	1	3	1	0
PHA	<u>200</u>	167	194	<u>205</u>	181	<u>208</u>	186	186	198	<u>214</u>	<u>212</u>	198

月別で見ると、4月と10月が隕石落下の目撃回数も多く、PHAからの流星(隕石)出現可能性も高いことが分かる。特に4月は軌道が求められている隕石の個数も多い。中でもPribramは4月7日、Neuschwansteinは4月6日であり、軌道も極めて似ている。さらに軌道は求められていないものの、オランダのGlanerbrug(1990年)とアルゼンチンのBerduc Centroid(2008年)はともに4月7日に落下したことは注目される。

第2表:時間帯別落下数:時間は地方時。 Time 0~ Witnessed Observed Time Witnessed <u>9</u> 3 <u>10</u> Observed

時間帯別では夕方に目撃回数が多い。これは従来から、人間の外での活動時間に左右されるためと説明され てきた。しかし、軌道が求められている隕石でも夕方に多くなっている。夜半前後から明け方にかけての目撃 例(必ずしも隕石の飛行自体を目撃したという意味ではない)少ないこともある程度は実際の現象を表してい る可能性がある。また、昼前後は人が外で活動し、目撃も多くなるはずであるが少ない。このことは隕石(大 火球)の輻射点分布に大きく影響されているものと考えられる。

残念ながら、PHA からの予想輻射点から落下の時間帯を推測することはできないので、第2表には PHA の 行はない。

3. PHA からの予想輻射点

PHA の定義は絶対等級が 22.0 以下(明るい)で地球軌道との最短距離が 0.05au 未満の NEA である。その ため、実に多くの PHA からの輻射点(流星出現)が予想される。DSH<0.1 という条件に限定しても、昇降点 と降交点の両方で流星出現が予想されるものがあるため、1458 個の小惑星から 2093 個の輻射点が推定された。

輻射点の分布を(λ-λs, β)の座標で第1図に示す。+が PHA による予想輻射点で、数字は落下が観測された隕石の落下時間帯(地方時)である。両者が極めてよく一致していることが分かる。前回の発表で示した、放物

線に近い軌道をたどる彗星からの予想輻射点とは逆に、輻射点は地球向点方向に存在せず、太陽方向と反太陽 方向に集中している様子が明らかである。

第1図:輻射点の分布

4. 検討

ここで取り上げた 20 個の隕石と 2014AA の軌道と 流星群の母天体として良く知られている天体の軌道 を第2図に示す。たくさんの軌道があって分かりに くいが、流星群の母天体と考えられているものに比 べて隕石の軌道は離心率の小さいものが多い。また、 代表的な木星族彗星である 21/P Giacobini-Zinner より 遠日点は内側の小惑星帯にあるものが多い。つまり、 隕石となった天体の多くは Apollo または Aten 型小惑 星であり、それらの小惑星が隕石の供給源とみてよ いであろう。

しかし、隕石の落下が夕方に多いことと、PHAの 輻射点分布との間には食い違いがある。太陽方向の 輻射点が南中するのは正午付近であり、反太陽方向 は夜半である。ここで実際に観測された隕石落下の 分布を詳しく見ると、太陽方向の輻射点であっても 00(2014 AA)を除いて、04,07,09 また17,19,19 であ り、反太陽方向の場合でも05,08 また18,20,20,21,23 23 である。反太陽方向に一部夜半に近いものも含ま れるが、いずれの方向であっても落下が起きている のは朝方か夕方である。

3200 Phaethon

隕石は PHA のような小惑星と考えられるが、予想

第2図:隕石の軌道と流星群の母天体

輻射点(太陽方向と反太陽方向)が天頂にあるときではなく、地平線に近い方が落下に至りやすいと考えられる。これは、流星体が斜めに大気に突入することによって、急激な大気密度の上昇によって破砕されることを免れているためであろう。

以上の考察から、<u>隕石落下を目撃する可能性が高いのは春・秋の朝と夕方</u>ということになる。隕石の軌道は オーストラリアの火球ネットによる2個を除けば、北半球の観測によるものである。従って、PHAによる予 測の方が偏りは少ないと考えられる。つまり、10月と11月は隕石落下を目撃するチャンスと言える。また、 最近の軌道データの多くは車載ビデオを含め、目撃者が撮影した写真・ビデオによるものが多い。従って、朝 に比べて夕方に観測されているものが見かけ上多くなっているものと考えられる。アメリカで好奇心旺盛な観 測者の中には、昼間の火球を記録するビデオ観測を試行しているものがいる。チェリャビンスク隕石の衝撃的 な映像が記録され、軌道が求められたように朝の通勤時間帯に車載ビデオを動かすのも有効かもしれない。

付録:軌道が判明している 20 個の隕石

(1)Pribram

Ondřejov では 1951 年から流星の 2 点観測が開始され、当初は 5 台のカメラであったが、その後 10 台に増強 された。10 台でほぼ全天の半分を撮影できる。1959 年 4 月 7 日 19h30m21sUT に-18~-19 等の火球が Ondřejov と 40.388 km 離れた Prčice で撮影された。Ondřejov で使用されたレンズは F/4.5, f=18cm の Tessar であり、フィ ルムは Agfa ISS 21/10 DIN である。9×12cm1400/m 回転のシャッターが取り付けられていた。また、自動追尾 のタイミングカメラにも撮影されていたので、時刻の精度は±1s である。当初は落下地点に近い Luhy という 村の名前が隕石の名称に用いられていた。推定落下地点から 485m の距離で発見された。

(2)Lost City

Prairie Network の4か所の地点オクラホマの Hominy と Woodward、カンサスの Pleasanton と Garden City で 撮影された。予測された地点から 700m の地点で発見された。Prairie Network は F/6.3, f=150mm のレンズと9 インチ角のフィルムが使用されていた。回転シャッターは切断間隔を規則的に変化させるようにプログラムさ れており、それによって出現時刻が推定された。全部で 16 の観測地点で構成され、1963~1975 年の間、運用 された。

(3)Innisfree

カナダの Meteorite Observation and Recovery Project (MORP)で Super-Komura 50mm に Kodak 70-mm Plus-X Pan が使用された。自動運用のため、パイロットの雲上からの目撃報告により、フィルムが回収、測定された。 Vegreville と Lousana の 2 点からの観測で、20~40cm の積雪の中で捜索が行われた。

(4)Peekskill

火球ネットでない、一般のビデオが飛跡・軌道決定の基本データとなった最初の例である。-13 等(満月程度)の火球が 40 秒飛行するという華々しいものであった。ビデオが流星会議等でも了解されたので、映像を記憶されている人も多いと思われる。落下が宵の時間帯で、16 件以上のビデオが撮影され、目撃者も多かった。また、自動車の車体に落下したものも含め、落下地点の捜索以前に発見された個体が多かった。

(5)Tagish Lake

明け方の薄明中の出現のため、火球の飛行記録は衛星からの画像と目撃である。飛行後の永続痕については ビデオと写真の記録があり、それらに基づいて軌道が求められた。落下地点は湖を中心とする地帯で、落下直 後には氷上から回収されたりしたが、かなりの部分は氷の融解とともに水中に没したものと考えられている。 炭素質コンドライトであり、彗星起源も想定される。

(6)Morávka

白昼の落下で、多数の目撃とともに電磁波音と衝撃波の両方が記録されている。軌道はスタンバイモードで あったビデオカメラ3台の記録から求められた。

(7)Neuschwanstein

ヨーロッパ火球ネット(EN)の、ドイツ5台、チェコとオーストリア各1台のカメラで撮影された。すべて全 天カメラで1晩に1コマ撮影する運用がなされていた。ドイツとオーストリアのものは反射鏡であるが、チェ コのものは魚眼レンズで精度が高いものであった。求められた軌道は Pribram 隕石と一致しており、両者が共 通の起源をもつことは確実と思われる。

(8)Park Forest

軌道は衛星画像と地上からのビデオ画像から求められた。少なくとも2軒の屋根に落下している。流星本体 が撮影されたビデオはいずれも警察の車載ビデオによる2件で、うち1件は静止した車両からのものであった。

(9)Villalbeto de la Peña

落下は日没前であり、多数の目撃者がある。軌道は2枚の写真と1件のビデオ画像から求められた。

(10)Bunburra Rockhole

オーストラリアの砂漠火球ネット(DFN)の2台のカメラで撮影された。DFNではF/3.5、f=30mmの魚眼レンズで1晩1コマ撮影する運用がなされ、Ilford FP4の9×12cmシートフィルムが使用されている。

(11)Almahata Sitta

Catalina Sky Survey (CSS)の 1.5m 望遠鏡によって Kowalski が小惑星を発見して 19 時間後に地球に衝突した 劇的な隕石である。落下は飛行中のパイロットからも目撃され、気象衛星 Meteosat 8 の他、アメリカの軍事衛 星からも撮影されている。隕石の名前はスーダンの Wadi Halfa と Khartoum を結ぶ最寄りの「6 番駅」という 意味である。

(12)Buzzard Coulee

晩方の出現で、目撃者は多数あり、衝撃波も多数報告されている。警察車両搭載のビデオ他の火球画像もか なりあるが、軌道決定には監視カメラで撮影された火球による影の移動が用いられた。

(13)Maribo

デンマークに落下した CM2 隕石であるが、火球画像はスウェーデンの監視カメラとオランダの全天カメラ によるものである。また、ドイツの流星レーダーでも記録されている。EN では、曇天のため、火球画像は撮 影されなかったが、光電管によって増光の様子が記録されていた。軌道は参考文献(18)による。

(14)Jesenice

チェコの2台の火球カメラから軌道を求めることができた。しかし、月明と薄雲のために条件は悪く、軌道 は隕石の発見地点と合うように調整されている。スロベニアで2台の全天カメラと1台のビデオ観測があるが、 チェコのものと系統的なずれを示している。

(15)Grimsby

Southern Ontario Meteor Network (SOMN)の6台の全天 CCD カメラ(解像度1k×1kのKAF1001Eを用いたSBIG ST-1001E に F/3.5、f=8mmのレンズを装着して-2等の流星が撮影できる)で撮影された。SOMNでは全部で7台のカメラを運用しているが、その観測点の1は CMORの観測所にある。写真に比べてカメラの精度は低いが、この火球についての平均残差は150m程度であった。1台の駐車車両に当たっている。

(16)Košice

ヨーロッパ中央部は曇天または雨天で、チェコの EN とスロバキアのビデオネットでは火球本体を撮影する ことができなかった。しかし、EN の観測点では雲を通しての強烈な光はラジオメーターに記録されていた。 軌道はハンガリーの3台の監視カメラ画像から求められている。永続痕が火球出現7時間後に撮影された。

(17)Mason Gully

オーストラリアの砂漠火球ネット(DFN)の2台のカメラで撮影された。隕石は推定落下地点から150mの場所で発見された。

(18)Sutter's Mill

アメリカの国立気象局が運用する気象ドップラーレーダーシステム"NEXRAD" (NEXt-Generation RADar)の うち3台によって落下が記録され、軌道が求められた。記録的な高速28.6km/sで大気に突入し、軌道から木 星族彗星を起源とすると考えられる。炭素質コンドライトである。落下に際して、電磁波音が観測され、<溶 接>の臭いが記録されている。

(19)Novato

Allsky Meteor Surveillance (CAMS)で捉えられた火球・隕石である。CAMS は Fremont Peak Observatory、Lick Observatory、Sunnyvale の 3 点に 20 の Watec Wat 902H2(+4 等級まで撮影可能、画角 20° × 30°)を配置して地平 から 30° 以上の全天をカバーしている。このうち 5 台のビデオカメラで撮影されている。なお、CAMS は Jenniskens の母国であるオランダを含め、西ヨーロッパでもアマチュアにより展開され、さらに活動の範囲を 広げている。

(20)Chelyabinsk

落下当初から多くの車載カメラ、監視カメラの映像がインターネットに流されていたため、多くの研究者に より、多様な軌道が求められている。ここで引用したものは 10 か所の火球ビデオと 5 か所の火球による影の ビデオから求められたものである。英語版のウィキペディアでは複数の軌道計算結果が比較されている。

(21)2014 AA

これは隕石が回収されたものではないが、観測された小惑星が地球に衝突した二番目の例である。Richard Kowalski が Catalina Sky Survey の一環として Mount Lemmon の 60 インチ反射望遠鏡で1月1日 6:18UT(地方時 では前日 12月 31日の午後 11:18)に9分ごとの4枚の映像でオリオン座北部に19等級の天体として発見した。 2014 年初の小惑星であるため、2014AA と名付けられたが、すぐに地球に衝突することが予報された。Peter Brown (University of Western Ontario)は核実験の検出用に配備されている3台の低周波検出器(20 hertz 以下)から 西経 40 度、北緯 12 度に 2 日 3 時 UT 過ぎに落下したと推定している。

軌道が正確に求められている20個の隕石と大西洋に落下した小惑星

Name	Place	Year	Month	Day	Time(LT)	α	δ	Vg	а	е	q	i	ω	Ω	Туре	Ref.
Pribram	Czechoslovakia.		1959	4	7 20h30m20s	192.343	17.461	17.427	2.401	0.6711	0.78951	10.478	241.738	17.80285	H5	(1),(7)
						±0.011	± 0.002	± 0.006	± 0.002	± 0.0003	± 0.00006	± 0.004	± 0.015	± 0.00001		
Lost City	USA.		1970	1	4 20h14m	315.5	39.3	8.8	1.66	0.417	0.967	12.00204	160.9702	283.7277	H5	(2)
Innisfree	Canada		1977	2	5 19h17m38	7.4	66.5	14.54	1.872	0.4732	0.986	12.27514	177.9511	317.517	L5	(3)
Peekskill	USA		1992	10	9 19h50m	209.6	-29.3	10.1	1.49	0.41	0.886	4.9	308	17.030	H6	(4)
									± 0.03	±0.01	± 0.004	±0.2	±1	±0.001		
Tagish Lake	Canada		2000	1	18 08h43m42s	88.0	27.9	11.3	2.1	0.57	0.891	1.4	222	297.900	C2-ung	(5)
									±0.2	± 0.05	± 0.009	±0.9	±2	± 0.003		
Morávka	Czech Republic		2000	5	6 12h51m52s	250.1	54.96	19.6	1.85	0.47	0.9823	32.2	203.5	46.2580	H5	(6)
						±0.7	±0.24	±0.4	±0.07	±0.02	± 0.0009	±0.5	±0.6			
Neuschwanstein	Germany		2002	4	6 21h20m17.7s	192.33	19.58	17.51	2.4	0.670	0.7931	11.43	241.1	16.82666	EL6	(7)
						± 0.09	±0.13	± 0.05	±0.02	± 0.003	± 0.0009	± 0.06	±0.2	± 0.00001		
Park Forest	USA		2003	3	26 23h50m	171.8	11.2	16.1	2.53	0.680	0.811	3.2	237.5	6.1156	L5	(8)
						±1.3	±0.5	±0.4	±0.19	±0.023	±0.008	±0.3	±1.6	±0.0007		
Villalbeto de la Peña	Spain		2004	2	4 17h46m45s2s	311.4	-18.0	16.9	2.3	0.63	0.860	0.0	132.3	283.6712	L6	(9)
						±1.3	±0.7	±0.4	±0.2	±0.04	±0.007	±0.2	±1.5			
Bunburra Rockhole	Australia		2007	7	21 04h43m57s	80.73	14.21	6.743	0.8529	0.2427	0.6459	8.95	210.04	297.595	Eucrite	(10)
						± 0.06	±.04	± 0.014	± 0.0004	± 0.0005	± 0.0007	± 0.03	± 0.06			
Almahata Sitta	Sudan		2008	10	7 05h46m	348.5	7.7	7.1	1.308201	0.312065	0.899957	2.5422	234.449	194.1011	Ureilite-an	(11)
Buzzard Coulee	Canada		2008	11	20 17h26m45s	285.3	77.3	14.3	1.225	0.215	0.961	25.486	212.019	238.937	H4	(12)
Maribo	Denmark		2009	1	17 20h08m28s	124.6	18.8	25.4	2.34	0.795	0.481	0.72	99.0	117.64	CM2	(13).(18)
				-		+1.0	± 1.6	± 0.8	+0.29	+0.026	± 0.010	+0.98	± 1.4	± 0.05		(
Jesenice	Slovenia		2009	4	9 2h59m40 5s	159.9	58.7	8.3	1 75	0.431	0.9965	96	190.5	19 196	16	(14)
000011100	Clovella		2000	•		+12	+05	+04	+0.07	+0.022	+0.0006	+05	+05	10.100	20	(11)
Grimshy	Canada		2009	9	25 21b03m	242.61	54 97	17.89	2 04	0.518	0.9817	28.07	159 865	182 9561	Н5	(15)
Grimbby	Oundu		2000	0	20 2110011	+0.26	+0.12	+0.22	+0.05	+0.011	+0.0004	+0.28	+0.43	102.0001	110	(10)
Kažiaa	Slovelrie		2010	2	29 22621m16a	114.2	±20.12	10.22	<u>+</u> 0.05	0.647	0.057	±0.20	204.2	240 072	ЦБ	(16)
Rusice	SIOVAKIA		2010	2	20 22/124/11405	114.3	+29.0	10.3 	2./1 	0.047	0.957	2.0 	204.2 	±0.072	пJ	(10)
Maran Oully	A		0010	4	10, 10- 26-10-	工 I.7	± 3.0	±0.5	±0.24	± 0.032	10.004	±0.0	± 1.2	± 0.004	115	(17)
Mason Gully	Australia		2010	4	13 18n30m10s	148.4	9.2	9.2	2.470	0.0023 +0.0007	0.98240 +0.00007	-0.032	18.95	203.2112	нэ	(17)
Suttor's Mill			2012	4	22 7h51m12c	24.0	127	26.0	<u>-</u> 0.004 2 59	0.824	0.456	2 38	<u> </u>	32 77	C	(18)
Succer 3 Mill	UUA		2012	7	22 /10/11/23	± 1 2	+17	+07	+0.25	+0.020	+0.022	+1.16	+22	+0.06	0	(10)
Nevete			2012	10	17 10644 - 20 99 -	<u> </u>	_10.0	<u> </u>	2.00	- <u>0.020</u>	0.0000	± 1.10		<u> </u>	16	(10)
Novalo	USA		2012	10	17 19044029.005	200.1	-40.9	0.21	2.09	0.520	0.9000	0.0	347.37	24.9414	LU	(19)
	р ·		0010	0		±0.0	±0.7	±0.22	±0.11	±0.024	±0.0003	±0.0	±0.18	±0.0005		(00)
Unelyapinsk	Russia		2013	Z	15 U9n20m32.2s	333.2	+0.3	15.3	1.70	0.581	0.739	4.93	108.3	320.4422	LLO	(20)
						±1.6	±1.8	±0.4	±0.16	± 0.018	± 0.020	±0.48	±3.8	± 0.0028		()
2014 AA	Atlantic Ocean		2014	1	2 0h	82.4	14.3	5.1	1.164276	0.213168	0.91609	1.425552	52.28165	101.5794		(21)

(1)NEW CZECHOSLOVAK METEORITE "LUHY", Zd. Ceplecha, J. Rajchl and L. Sehnal, BAC 10(1959),147-148; Orbital data from (7)

(2)LOST CITY METEORITE - ITS RECOVERY AND A COMPARISON WITH OTHER FIREBALLS, R. E. McCrosky, A. Posen, G. Schwartz, and C. -Y. Shao, SAO Special Report #336 (1971) (3)THE INNISFREE METEORITE AND THE CANADIAN CAMERA NETWORK, IAN HALLIDAY, ALAN T. BLACKWELL AND ARTHUR A. GRIFFIN, J. Roy. Astron. Soc. Can., Vol. 72, No. 1, 15-39, 1978

(4) The Fall of the Peekskill Meteorite: Video Observations, Atmospheric Path, Fragmentation Record and Orbit, M. Beech, P. Brown, R. L. Hawkes, Z. Ceplecha, K. Mossman, and G. Wetherill, Earth, Moon, and Planets 68: 189-197, 1995.

Videos: http://meteor.uwo.ca/~pbrown/Videos/peekskill.htm and http://fireball.meteorite.free.fr/meteor/en/1/1992-10-09/peekskill/synthese

(5) The Fall, Recovery, Orbit, and Composition of the Tagish Lake Meteorite: A New Type of Carbonaceous Chondrite, Peter G. Brown et al. 13 OCTOBER 2000 VOL 290 SCIENCE, 320-325.

(6) The Morávka meteorite fall: 1. Description of the events and determination of the fireball trajectory and orbit from video records, J. BOROVICKA, P. SPURNÝ, P. KALENDA, and E. TAGLIAFERRI, Meteoritics & Planetary Science 38, Nr 7, 975–987 (2003)

(7)THE ATMOSPHERIC TRAJECTORY AND HELIOCENTRIC ORBIT OF THE NEUSCHWANSTEIN METEORITE FALL ON APRIL 6, 2002, Pavel Spurny, Dieter Heinlein, and Jurgen Oberst. In: Proceedings of Asteroids, Comets, Meteors - ACM 2002. International Conference, 29 July - 2 August 2002, Berlin, Germany. Ed. Barbara Warmbein. ESA SP-500. Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-810-7, 2002, p. 137 – 140

(8) The orbit, atmospheric dynamics, and initial mass of the Park Forest meteorite, P. BROWN, D. PACK, W. N. EDWARDS, D. O. REVELLE, B. B. YOO, R. E. SPALDING, and E. TAGLIAFERRI, Meteoritics & Planetary Science 39, Nr 11, 1781–1796 (2004)

(9) The Villalbeto de la Peña meteorite fall:II. Determination of atmospheric trajectory and orbit, Josep M. TRIGO-RODRÍGUEZ, Jirí BOROVICKA, Pavel SPURNÝ, José L. ORTIZ, José A. DOCOBO, Alberto J. CASTRO-TIRADO, and Jordi LLORCA, Meteoritics & Planetary Science 41, Nr 4, 505–517 (2006)

(10) The Bunburra Rockhole meteorite fall in SW Australia: fireball trajectory, luminosity, dynamics, orbit, and impact position from photographic and photoelectricrecords, Pavel SPURNY' 1, Philip A. BLAND, Luka's SHRBENY', Jir'i' BOROVIC' KA1, Zdene'k CEPLECHA, Andrew SINGELTON, Alex W. R. BEVAN, David VAUGHAN, Martin C. TOWNER, Terence P. MCCLAFFERTY, Ralf TOUMI, and Geoff DEACON, Meteoritics & Planetary Science 47, Nr 2, 163–185 (2012)

(11)Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite parent body, Peter JENNISKENS, Je're'mie VAUBAILLON, Richard P. BINZEL, Francesca E. DeMEO, David NESVORNY', William F. BOTTKE, Alan FITZSIMMONS, Takahiro HIROI, Franck MARCHIS, Janice L. BISHOP, Pierre VERNAZZA, Michael E. ZOLENSKY, Jason S. HERRIN, Kees C. WELTEN, Matthias M. M. MEIER, and Muawia H. SHADDAD, Meteoritics & Planetary Science 45, Nr 10–11, 1590–1617 (2010)

(12)Pre-fall Orbit of the Buzzard Coulee Meteoroid, E. P. Milley, A. R. Hildebrand, P. G. Brown, M. Noble, G. Sarty, A. Ling, and A. Ling, AAPG Search and Discovery Article #90172 CSPG/CSEG/CWLS GeoConvention 2010, Calgary, Alberta, Canada, May 10-14, 2010

(13)Maribo—A new CM fall from Denmark, Henning HAACK, Thomas GRAU, Addi BISCHOFF, Marian HORSTMANN, John WASSON, Anton SØRENSEN, Matthias LAUBENSTEIN, Ulrich OTT, Herbert PALME, Marko GELLISSEN, Richard C. GREENWOOD, Victoria K. PEARSON, Ian A. FRANCHI, Zelimir GABELICA, and Philippe SCHMITT-KOPPLIN, Meteoritics & Planetary Science 47, Nr 1, 30–50 (2012)

(14) Analysis of instrumental observations of the Jesenice meteorite fall on April 9, 2009, Pavel SPURNY', Jir'i' BOROVIC' KA, Javor KAC, Pavel KALENDA, Jure ATANACKOV, Gregor KLADNIK, Dieter HEINLEIN, and Thomas GRAU, Meteoritics & Planetary Science 45, Nr 8, 1392–1407 (2010)

(15)The fall of the Grimsby meteorite—I: Fireball dynamics and orbit from radar, video, and infrasound records, P. BROWN, P. J. A. McCAUSLAND, M. FRIES, E. SILBER, W. N. EDWARDS, D. K. WONG, R. J. WERYK, J. FRIES, and Z. KRZEMINSKI, Meteoritics & Planetary Science 46, Nr 3, 339–363 (2011)

(16)The Kosice meteorite fall: Atmospheric trajectory, fragmentation, and orbit, Jiri BOROVICKA, Juraj TOTH, Antal IGAZ, Pavel SPURNY, Pavel KALENDA, Jakub HALODA, Jan SVOREN, Leonard KORNOS, Elizabeth SILBER, Peter BROWN, and Marek HUSARIK, Meteoritics & Planetary Science 1–23 (2013)

(17)THE MASON GULLY METEORITE FALL IN SW AUSTRALIA: FIREBALL TRAJECTORY AND ORBIT FROM PHOTOGRAPHIC RECORDS, P. Spurný, P. A. Bland, L. Shrbený, M. C. Towner, J. Borovička, A. W. R. Bevan, D. Vaughan, 74th Annual Meteoritical Society Meeting (2011), 5101.pdf

(18)Radar-Enabled Recovery of the Sutter's Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia, Peter Jenniskens, et al., 21 DECEMBER 2012 VOL 338 SCIENCE, 1583-1587

(19)Fall, Recovery and Characterization of the Novato L6 Chondrite Breccia, Peter JENNISKENS, et al., Meteoritics & Planetary Science, 7 AUG 2014, (draft paper can be found at https://profile.usgs.gov/myscience/upload_folder/ci2014Jun1214154574880176_MAPS-Novato8.pdf)

See also: http://cams.seti.org/index-N.html

(20)Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization, Olga P. Popova, et al, SCIENCE VOL 342 29 NOVEMBER 2013, 1069-1073

See also: <u>http://en.wikipedia.org/wiki/Chelyabinsk_meteor</u>

Videos: http://newswatch.nationalgeographic.com/2013/02/15/best-videos-from-meteor-strike-in-russia/

(21)http://www.skyandtelescope.com/astronomy-news/small-asteroid-2014-aa-hitsearth/

地球の衝突断面積と隕石落下速度

YouTube

理化学研究所 光量子工学研究領域 先端光学素子開発チーム 海老塚 昇

小天体の日心速度

近日点距離: *R_p*および遠日点距離: *R_{ap}から近日点における日心速度: v_p を求める。遠日点における日心速 度: <i>v_{ap}*,太陽質量: *M_S*,小天体質量: *m* とすると、エネルギー保存則およ び角運動量保存則はそれぞれ、

$$\frac{1}{2}mv_{ap}^{2} - \frac{GM_{s}m}{R_{ap}} = \frac{1}{2}mv_{p}^{2} - \frac{GM_{s}m}{R_{p}} \dots (1-1)$$

$$mv_{p}R_{p} = mv_{ap}R_{ap} \dots (1-2)$$
である。 式(1)*I***C**(2)**を**代入すると、
$$\frac{1}{2}\left(\frac{R_{p}}{R_{ap}}\right)^{2}v_{p}^{2} - \frac{GM_{s}}{R_{ap}} = \frac{1}{2}v_{p}^{2} - \frac{GM_{s}}{R_{p}}$$

$$v_{p} = \sqrt{2GM_{s}}\left\{\frac{R_{ap}}{R_{p}(R_{p} + R_{ap})}\right\} \dots (1-3)$$

天体のエネルギー:
$$E$$

 $E = \frac{1}{2}mv^2 - \frac{GMm}{R}$

(http://www.seibutsushi.net/blog/2012/06/001307.html)

小天体の地心速度

式1-3より、近日点距離: R_p が地球の軌道半径: R_E (1au) と等しく、 地球との軌道傾斜角: $i=0^\circ$ の天体について地心速度: v_h を求める。

$$v_{h} = \left| \sqrt{2GM_{s} \left(\frac{R_{ap}}{R_{E} \left(R_{E} + R_{ap} \right)} \right)} - 29.8 \right|$$

 $GM_S = 1.33 \times 10^{20} \ [m^3/s^2]$ $R_E = 1.5 \times 10^{11} \ [m]$

遠日点距離	近日点速度	地心速度	備	考
$R_{ap}[au]$	$v_p[km/s]$	$v_h[km/s]$		
1	29.8	0	地球軌道	
1.52	32.7	2.9	R _{ap} =火星朝	ı道
1.8	33.8	4.0	R _{ap} ~メイン	ベルト内縁
3.2	36.8	7.0	R _{ap} ~メイン	ベルト外縁
5.20	38.6	8.8	R _{ap} =木星朝	ı道
∞	42.1	12.3	1	
∞	42.1	71.9	<i>i</i> = 180	

地球の衝突断面積

地表に接する軌道のエネルギー保 存則および角運動量保存則から衝 突断面積を求める。地表における 速度を v_e ,地球質量を M_E ,地球半径 e_R_e とすると R_p が R_E と等しい天体 エネルギー保存則は、

$$\frac{1}{2}mv_h^2 = \frac{1}{2}mv_e^2 - \frac{GM_Em}{R_e} \qquad \dots (2-1)$$

となる。一方、地表に接する軌道の天体の角運動保存則および衝突 断面積はそれぞれ、

$$mv_h R_b = mv_e R_e \qquad \dots (2-2)$$

$$\sigma = \pi R_b^2 \qquad \dots (2-3)$$

である。ここでσは衝突断面積、

R_bはその半径である。 式(2-3)に(2-1)および(2-2)を代入す ると、

$$\sigma = \pi R_e^2 \left(1 + \frac{2GM_E}{R_e v_h^2} \right) \quad \dots (2-4)$$

となる。

小天体の速度と地球の衝突断面積

地心速度

 v_h

心速度	衝突断面積	σ 半径	面積比	備	考
[<i>km/s</i>]	σ [km ²]	R_{b} [km]	$\sigma/\pi R_E^2$		
1	1.61×10^{10}	71,600	126		
2	4.12×10^{9}	36,200	32.3		
2.9	2.03×10^{9}	25,400	15.9	R _{ap} =火星	軌道
4	1.13×10^{9}	19,000	8.83	R _{ap} ~メイ	ンベ
7	4.53×10^{8}	12,000	3.56	R _{ap} ~メイ	ンベ
8.8	3.34×10^{8}	10,300	2.62	R _{ap} =木星	軌道
12.3	2.33×10^{8}	8,610	1.83	$R_{ap} = \infty, i =$	= 0°
33	1.42×10^{8}	6,730	1.12	ふたご座	流星
42	1.37×10^{8}	6,590	1.07	$R_{ap} = \infty, i =$	= 90°
72	1.31×10^{8}	6,460	1.02	$R_{ap} = \infty, i =$	= 180
∞	1.28×10^{8}	6,370	1.00	幾何断面	積

道 ベルト内縁 ベルト外縁 道 0 星群)**)**° 80°

地表における隕石の速度 (v_e)

$v_e = \sqrt{v_h^2 + \frac{2GM}{P}}$		GN
₩ 小 速度	地表速度	
v_h [km/s]	$v_e[km/s]$	
0	11.19	
1	11.24	
2.9	11.6	
4	11.9	
7	13.2	
8.8	14.2	
12.3	16.6	
33	34.9	
42	43.5	
72	72.9	

式2-1より、

 $GM_{F} = 3.99 \times 10^{14} [m^{3}/s^{2}]$ $R_{e} = 6.37 \times 10^{6} [m]$ 備 者 第二宇宙速度 R_{ap}=火星軌道 R_{ap}~メインベルト内縁 R_{ap}~メインベルト外縁 R_{ap} =木星軌道 $R_{ap} = \infty, i = 0^{\circ}$ ふたご座流星群 $R_{ap} = \infty, i = 90^{\circ}$ $R_{ap} = \infty, i = 180^{\circ}$

2015/2/1 MSS **火球の超望遠高速度撮影** _{鈴木 智}

VIS-NIR

Na

Mg

radiants sol=281.6 01/02

ペルヤウス座流星群の眼視観測報告

信太 一那、岩田 彩花 (中等 4) 島 匠、石井 奏人、阿部 海舟、多田 菜々子 (中等 5) 【東京大学教育学部附属中等教育学校天文部】

1. はじめに

私たちは8月12日~8月13日にかけて、ペルセウス座流星群の眼視観測と撮影を行っ た。初めて流星観測を行うという人がほとんどで、眼視観測のデータは信憑性に欠けるが、 天候には恵まれ、観測を行った2日共快晴であった。今回はペルセウス座流星群の眼視観 測の報告である。

2. 観測方法

観測場所:長野県松本市安曇スポーティア乗鞍 ○計数観測

8月12日、8月13日の2日間とも、計数観測を行った。8月12日は東西南北天頂にわ かれ、4人の観測者と記録者1人で、8月13日は8月12日のメンバーと、活動が活発に なると考えられる明け方に4名ほど観測者を増やして観測を行った。流星の出現時刻、発 光時間、光度、色、痕の有無、群流星か散在流星かを記録した。ベガを0等星、デネブと アルタイルを1等星とみて観測した。

日没	18:37
薄明終了	20:11
月の出	8:54
月没	20:40
日の出	4:56
薄明開始	3:23
月齢	4.2

8月11日~8月12日の暦 8月12日~8月13日の暦

日没	18:36	
薄明終了	20:09	
月の出	09:55	
月没	21:16	
日の出	4:57	
薄明開始	3:24	
月齢	5.2	

3. 観測結果

眼視観測による流星群の出現の様子につい てまとめたものを、以下に表す。

表1:0時から4時までのHR

時間 (hh:mm:ss)	8月12日	8月13日
00:00:00~00:59:59	25	80
01:00:00~01:59:59	41	98
02:00:00~02:59:29	59	105
03:00:00~03:59:59		121

最微 6.2 雪量 O

図 1:表1のグラフ

表2:8月13日の光度分布

時間(hh:mm:ss)	3 等級	2 等級	1等級	0 等級	-1等級	-2等級	-3等級
00:00:00~00:59:59	1	17	26	20	15	0	0
01:00:00~01:59:59	0	16	39	25	13	3	0
02:00:00~02:59:29	0	16	29	39	18	3	0
03:00:00~03:59:59	0	23	48	31	16	3	0

図2:30分ごとの群流星数/全流星数

図 3:30 分ごとの群流星痕あり/群流星数

- 4. 考察
 - ・表1より、極大日の観測データの最大 HR121 に対し、予想が HR70 であった。 →観測条件が良いことに加え、ペルセウス座流星群の活動が活発であったのでは。
 - ・図1より、両日とも明け方にかけて出現流星数が増加していることが分かる。 →明け方にかけてペルセウス座が天頂付近に昇ってくるためと考えられる。
 - ・表2より、火球は観測されなかったが、明るい流星も出現した。
 - ・図2より、HRと同じく群流星の割合が明け方に増加している。
 また、群流星の割合が両日で大差ないことがわかる。
 - ・図3より、活動が活発になると予想されていた8月13日の3時からは、痕ありの群 流星の割合が極端に低い。

→薄明が始まり、痕が見えにくくなっていったと考えられる。

5. 今後に向けて

眼視観測については、各観測者の技術を向上することが課題である。 今後は、観測されたデータと撮影された流星写真を合わせて、放射領域を検出する予定 である。

6. 参考文献

- ・天文年鑑編集委員会 「天文年鑑 2013 年版」(誠文堂新光社)
- ・国立天文台「ペルセウス座流星群」 http://www.nao.ac.jp/astro/sky/2013/perseids.html

観測方法

<計数観測>

東西南北天頂に分かれて流星の出現時刻、 発光時間、光度、色、痕の有無、群流星か散 在流星かを記録した。

ベガを0等星 デネブ、アルタイルを1等星とした。

観測情報

- ・機材 カメラ:Nikon D5000 レンズ:35mm
 ・観測期間
- 8月11日~8月13日 0時~3時(4時まで) ・観測場所
- 長野県松本市スポーティア乗鞍 (緯度:36、経度137)

			I	眼	視霍	見測			
表1:8/12と8	/13の	0時	~4開	手まて	OHR	140	1:表1のグ	ラフ化	
時间(hh:mm:ss)		8月1	12 8月13			120		1	
00:00:00~00:59:59		25	25 80			80	/		
01:00:00~01:59:59		41	1 98			60	/	-	
02:00:00~02:59:29		59		105	1	20			
03:00:00~03:59:59		121		121		0			-
表2:8/13の0時	~4時	まで	の光	度分	布	6,0,0	010000 0100	\$ 03000 G	
時間(hh:mm:ss)	3等;	級	2等着	Ŕ	1等級	0等級	-1等級	-2等級	一3等級
00:00:00~00:59:59	1	-	17		26	20	15	0	0
01:00:00~01:59:59	0		16	-	39	25	13	3	0
02:00:00~02:59:59	0		16		29	39	18	3	0
03:00:00~03:59:59	0		23		48	31	16	3	0 5

結果

- 表1より、極大日の観測データの最大HR121
 に対し、予想がHR70であった。
- 図1より、両日とも明け方にかけて出現流星数が増加していることが分かる。
- 表2より、火球は観測されなかったが、明るい 流星も出現した。

	J	放射領	域					
①眼視観測データと流星の写った写真から、群流星の写った写真を探す。 ②星図(心射図法)に群流星をブロットする。 ③カメラの写真のゆがみは、ステラナビゲーター8を使用し処理した。 ④プロットした群流星の軌道を延長する。								
流星番号	出現時間							
No.1	23:51:40							
No.2	24:40:27							
No.3	25:03:21							
No.5	25:54:06							
No.6	26:14:10							
No.7	26:53:40							
No.8	27:07:40							
No.9	27:09:16							
No.10	27:09:16	- 求めた:	ベルセウス座流星群の放射領域は、 3h21m1164s赤緯:+59°10'04.3"					

オーストラリアでの"みずがめ座η流星群"の観測

柳 信一郎

みずがめ座 η 流星群の観測を目的とした海外遠征はこれで3回目になる。今年(2014年) はオーストラリア・ケアンズ近郊のアサートンという町で流星観測を行った。本報告では全天 計数観測の結果をまとめると共に、1987年,1989年の観測結果と比較した。

1.遠征の記録

今年(2014年)を含めた過去3回の海外遠征は次の通りである。

 1987年4月30日~5月10日(このうち観測したのは3夜)
 重野氏を隊長にして6名が遠征。メルボルン近郊のモアマ(Moama)とウォンブータ (Womboota)に分かれて4連カメラ2セットを用いて2地点同時観測を行った。
 柳はラムカ観測(眼視観測)を行った。以下は柳の観測地のデータである。
 2/3,4/5 Womboota E144°34′09″ S35°54′13″ H=92m
 5/6 Moama E144°44′56″ S36°06′04″ H=97m

1989年4月27日~5月7日(このうち観測したのは3夜) 重野氏を隊長にして7名が遠征。内陸部のマウント・アイサ(Mt.Isa)で4連カメラ2 セットを用いて2地点同時観測を行った。 柳はラムカ観測(眼視観測)を行った。以下は柳の観測地のデータである。 2/3,4/5,5/6 Mt.Isa E139°23′58″ S20°57′36″ H=400m

- 2014年5月3日~5月8日(このうち観測したのは2夜)
 家族旅行という形で2名で遠征。ケアンズ近郊のアサートン(Atherton)で全天計数観 測を行った。
 4/5,5/6 Atherton E145°28′43″ S17°14′10″ H=770m
- 2. 観測結果

以下に2014年の観測結果を示す。

時刻は日本時間(JST)で表示する。現地時刻は日本時間+1時間(UT+10h)である。 観測方向は天頂で、記録はさぐり書きで行った。

DATE	JST	Time	aM	Spo	ηAqr	Lm	CL	Dir
May 2014								
04/05	03:00-03:30	30	19	5	14	5.5	0	Z
04/05	03:30-04:00	30	27	9	18	5.2	0	Z
04/05	04:00-04:30	30	15	8	7	4.5	0	Ζ
05/06	02:30-03:00	30	44	24	20	5.5	0	Z
05/06	03:00-03:30	30	31	14	17	5.0	0	Ζ
05/06	03:30-04:00	30	28	10	18	4.7	0	Z
05/06	04:00-04:30	30	51	16	35	4.5	0	Ζ

1日目と2日目で最微等級(Lm)がほぼ同じだったのに、散在流星の数が大きく異なって しまった。主たる原因は慣れない南天の星座だったので、群判定を間違えたためだと思う。 第137回 流星物理セミナー(2014.07.06)

3.これまでの観測結果との比較

1987年,1989年,2014年の観測結果を比較する。

1987年,1989年は空の一部を区切って"ラムカ観測"を行ったが、本報告ではこの時に 記録されたラムカ外の流星も含めて全天計数観測とした。

光度比は1987年に求めた 1.57 と仮定した。

図-1に太陽黄径とZHRの関係を示す。

図-1 太陽黄径とZHRの関係

図-1によれば今年(2014年)の活動規模は1987年と同等だったと思われる。

しかしプロット状況から判断すると、輻射点の高度補正が充分であったとは思われない。 図-2では補正を行う前の流星数、すなわち観測された群流星の1時間あたりの個数(HR) で比較する。但し観測は30分ごとに区切り、時間補正を行っている。(1987年5月5/6日 だけは60分の観測記録を用いた。)

縦スケールが広がった分、バラつきが大きくなったが、実際に観測された群流星の個数は 図-2の範囲で1時間あたり50以上、今年は70に達している。

今年の遠征では"みずがめ座η流星群"が健在であることを確認できた。

参考文献

同時流星写真観測オーストラリア遠征報告 WOMBOOTA-MOAMA 編(1987年4月30日~5月10日) 同時流星写真観測オーストラリア遠征報告 Mt.Isa 編(1989年4月27日~5月7日)

表一	1	これ	E	での	観測	記録
			0.		190 1713	HC MU

.

JST	-(UT+9h)	Dur (分)	-3	-2	-1	0	1	2	3	4	5	6	計	最微星	雲量	太陽黄径 (J2000.0)	輻射点 高度	光度比 γ	HR	Fa	CHR	Fb	ZHR
1987.05.02/03	03h30m-04h00m	30					3	4	4	1		-	12	6.5	0	42.02	31	1.57	24	1.00	24.0	1.93	46
	04h00m-04h30m	30			2	2	2	2					8	6.5	0	42.04	37	1.57	16	1.00	16.0	1.67	27
	04h30m-05h00m	30					1	2	4	2			9	6.5	0	42.06	42	1.57	18	1.00	18.0	1.49	27
1987.05.04/05	02h30m-03h00m	30					2	3	1	2			8	6.5	0	43.92	21	1.57	16	1.00	16.0	2.79	45
	03h00m-03h30m	30				2	3	5	8	2			20	6.5	0	43.94	27	1.57	40	1.00	40.0	2.20	88
	03h30m-04h00m	30			1	2	1	2	4	4			14	6.5	0	43.96	33	1.57	28	1.00	28.0	1.85	52
	04h00m-04h30m	30			1	5	6	4	8	3			27	6.5	0	43.98	38	1.57	54	1.00	54.0	1.61	87
	04h30m-05h00m	30	1			2	7	7	7	4			28	6.5	0	44.00	43	1.57	56	1.00	56.0	1.45	81
1987.05.05/06	03h00m-04h00m	60				4	12	9	14	11	4	1	54	6.5	0	44.92	30	1.57	54	1.00	54.0	1.99	108
1989.05.02/03	02h30m-03h00m	30			1				1		1	1	3	6.5	0	42.44	18	1.57	6	1.00	6.0	3.31	20
	03h00m-03h30m	30						1	1	3	3	3	8	6.5	0	42.46	25	1.57	16	1.00	16.0	2.40	38
	03h30m-04h00m	30		2		1	1	1	5	1	1	1	12	6.5	0	42.48	32	1.57	24	1.00	24.0	1.91	46
	04h00m-04h30m	30				2	2	2	3	2			11	6.5	0	42.50	39	1.57	22	1.00	22.0	1.60	35
1989.05.04/05	02h30m-03h00m	30					1		2	2	1	1	6	6.5	0	44.38	19	1.57	12	1.00	12.0	3.01	36
	03h00m-03h30m	30			1			3	4	2		1	11	6.5	0	44.40	26	1.57	22	1.00	22.0	2.24	49
	03h30m-04h00m	30			1	3	4	1	5	2	1	1	17	6.5	0	44.42	33	1.57	34	1.00	34.0	1.81	62
	04h00m-04h30m	30			1	1	2		6				10	6.5	0	44.44	40	1.57	20	1.00	20.0	1.54	31
1989.05.05/06	02h30m-03h00m	30			1	1	2	3	3	1	1	1 2	14	6.5	0	45.35	20	1.57	28	1.00	28.0	2.87	80
	03h00m-03h30m	30				1		2	2	5			10	6.5	0	45.37	27	1.57	20	1.00	20.0	2.17	43
2014.05.04/05	03h00m-03h30m	30		1	1				4	8			14	5.5	0	44.01	33	1.57	28	1.57	44.0	1.86	82
	03h30m-04h00m	30	1					2	6	8	1	1	18	5.2	0	44.03	40	1.57	36	1.80	64.7	1.57	102
	04h00m-04h30m	30							3	4			7	4.5	0	44.05	47	1.57	14	2.46	34.5	1.38	48
2014.05.05/06	02h30m-03h00m	30		1			1		4	8	6	6	20	5.5	0	44.96	26	1.57	40	1.57	62.8	2.26	142
	03h00m-03h30m	30				2		3	5	7			17	5.0	0	44.98	33	1.57	34	1.97	66.9	1.81	121
	03h30m-04h00m	30				1	1	2	1	13			18	4.7	0	45.00	40	1.57	36	2.25	81.1	1.54	125
	04h00m-04h30m	30	1	1			1	3	17	12			35	4.5	0	45.02	47	1.57	70	2.46	172.5	1.36	234

<u>METRO / NMS</u> 流星物理セミナー@原宿 2014. 7.6	<u>METRO/NMS</u> 流星物理セミナー@原宿 2014. 7
ふたご座流星群の	概略: ・毎年12月14日頃に出現
有痕率の変化について	流星群は、眼視観測で流 が知られている。しかし フカメラでは多くの流星
○戸田雅之(日本流星研究会 流星痕同時観測チーム)	・超高感度デジタルー眼レ 星群の2010年から2013
	・デジタルカメラ観測と眼 を考察する。

概略:
・毎年12月14日頃に出現数の極大を迎えるふたご座 流星群は、眼視観測で流星痕の出現数が少ないこと が知られている。しかし、超高感度デジタル一眼レ フカメラでは多くの流星痕が観測されている。
・超高感度デジタルー眼レフカメラによるふたご座流 星群の2010年から2013年までの観測を紹介する。
・デジタルカメラ観測と眼視観測との流星痕数の違い を考察する。

<u>METRO/NMS</u> 济	星物理セミナー@原宿 2014. 7.6
観測	
観測日時	i:2013 年12月14日03h23m52s(JST)から 14日05h39m59sまで.
観測地	:山梨県北杜市大泉町西出井
カメラ	: ニコンD3.
レンズ	:28mm/f1.4(対角線画角:74度).
設定	:ISO 感度25,600.
	シャッタースピード:1/1.3 秒 (0.77 秒).
	インターバル:1 秒.
	色温度:5560K
撮影枚数	て: 6,934コマ

METRONM 流星物理セミナー@原宿 2014.7.6 か回も取得した6,934画像を全てPCのディスプレイ 上で目視チェックし、流星と流星痕が写った画像をピッ クアップした。内訳は以下の通り。 全流星:117個. ふたご座流星群の流星:96個. ふたご座流星群の流星起源の流星痕:47個. (短痕:38個、永続流星痕:9個) 散在流星:22個 散在流星起源の流星痕:15個 流星と流星痕の光度は流星用観測星図と比較して決定し たので見かけの光度である。誤差は±1等。

METRO/NMS	流星物理セミナー@原宿 2014. 7.6								
	流星の出現数(2010年) ^{2010. Dec. 14/15} JST UT Gem. Train Spo. Train								
	 15d								
	3h 18h* 43* 5* 9* 4* 4h 19h 36 5 8 6 5h 20h* 19* 2* 10* 6*								
	*印は正味60分の出現数ではない。								
	光度分布								
	2010. -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7								
	Tr 0 0 0 7 6 7 8 8 18 23 17 4 1 Tr 0 0 0 3 5 2 0 0 0 1 0 0 0 Spo 0 1 1 0 1 1 2 2 4 6 9 0 0 Tr 0 1 1 0 1 1 0 1 2 3 6 0 0								

METRO/NMS	流星物理セミナー@原宿 2014. 7.6
	流星の出現数(2012年) 2012. Dec. 13/14 JST UT Gem. Train Spo. Train
	光度分布
	2012. -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
	Gem 0 2 10 8 12 25 21 23 22 26 16 7 0 Tr 0 2 10 8 10 22 17 16 13 10 1 1 0 Spo 0 0 0 1 2 3 7 4 11 11 9 2 0 Tr 0 0 0 1 0 3 6 3 8 7 6 1 0

METRO/NMS	流星物理セミナー@原宿 2014. 7.6
	流星の出現数(2013年) 2013. Dec. 13/14 JST UT Gem. Train Spo. Train
	 14d
	3h 18h* 14* 2* 2* 0* 4h 19h 45 20 10 8 5h 20h* 36* 21* 10* 7*
	*印は正味60分の出現数ではない。
	光度分布 ^{2013.} -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
	Gem 0 3 2 3 8 8 3 11 12 23 17 5 0 Tr 0 3 2 1 6 6 2 2 4 6 1 0 Spo 0 1 0 0 3 2 0 0 5 8 3 0 Tr 0 1 0 0 3 1 0 2 3 3 0 0

<u>TRO/NMS</u> 流星物理セミナー@原料	宮 2014. 1	7. 6
有痕率		
有痕率(=流星疽	夏出現	数/流星出現数)
ふたご座流星群(V∞(km/s) = 3 Year % Train / Meteor I	5) Methoc	author
1990: 3.5% (80 / 2318) 1991: 1.8% (21 / 1167) 1993: 5.4% (149 / 2763) 1996: 4.0% (101 / 2543) 1999: 3.7% (56 / 1510) 2001: 3.6% (101 / 2839) 2012: 2.8% (14 / 501)	NE NE NE NE NE NE	S. J. Evans and N. M. Bone(1993) S. J. Evans and N. M. Bone(1993) S. J. Evans and N. M. Bone(1996) S. J. Evans and N. M. Bone(2001) N. M. Bone(2005) N. Bone(2007) Fuchu Astron. Soc. (2013)
2010 : 12% (12 / 99) 2012 : 67% (110 / 173) 2013 : 48% (47 / 96)	DC DC DC	2013秋季年会 2013秋季年会 2014春季年会

継続時 ^{写真 年月日}	間の ^{母流星} 出現時刻 (±0.5s)	長し ^{母流!} リ光度 [mag) ^{王 コ・} り	いたご 群 流 生 ^{マ数 痕光度} (最初の10駒)	注 股 継続時間4秒以上の流星痕リスト
* 1 20101215 20121214 * 2 * 3 * 4	045838 003837 011305 021351 021536 021839 023331 023448 025300 030801 033354 033354 0335642 040443 041924	-2 0 -4 -4 -2 -2 -5 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	4 9 25 4 5 5 4 11 55 8 45 22	56.6.6. 46.6.6. 0.56.6.6.7.7.6. 36.7.7.6.6. 46.7.7.7. 67.6.7.7.6. 45.6.6.6.7.7.6.7 1.1.2.2.3.3.2.3.3 56.7.7.7.7.6.7. 56.7.6.5.5.5. 3.55.6.6.6.6.7.7 2.3.4.3.5.3.4.4	ふたご座流星群の流星痕で継続時間の 長いものをリストアップした。左から 年月日、流星出現時刻(JST)、母流星 光度、撮影コマ数、痕の光度。
20131214	043549 043923 045923 050331 050432 051314 051830 053412	-1 -3 -3 -1 -4 -4	5 13 4 30 4 16 8	5.6.7.6.7 5.6.6.7.7.7.7.7.7.7 3.6.7.7. 7.7.7.7 3.4.4.4.4.4.4.4.4.4.4 4.7.7.7. 7.6.7.7.6.6.6.7.6 5.7.7.7.7.7.7.7.	

<u>METRO/NMS</u> 流星物理セミナー@原宿 2014. 7.6
デジタルカメラによる流星痕観測数が多い
2012年ふたご座流星群の観測で173個の群流星と 110個の流星痕を観測。2013年では96個の群流星に対 し47個の流星痕を観測した。
流星痕の有痕率(=出現確率)は2010年12%、 2012年67%、2013年は48%。
眼視観測で高い出現確率で観測されたことはない。

METRO/NMS 流星物理セミナー@原宿 2014.7.6

デジタルカメラによる流星痕観測数が多い

眼視観測との有痕率の違いを、観測条件由来のものと して考察した。

変わらない:カメラ、レンズ、絞りとISO設定。

異なるもの:観測地、透明度、 シャッタスピード(1秒→0.77秒)、 カラーバランス、 観測時間中の流星出現数。

<u>METRO/NMS</u> 流星物理セミナー@原宿 2014. 7.6
デジタルカメラによる流星痕観測数が多い
考察を進めてみた。
デジタルカメラの高感度特性が大きく貢献。 (1)眼視観測では捉えにくい暗い流星による流星痕 や1秒以内で消失する流星痕を撮像している。
(2)デジタルカメラでは見逃しが発生しない
(3)眼視観測で流星痕と判定するのに若干の時間を 要する。

METRO/NMS 流星物理セミナー@原宿 2014.7.6

まとめ

ふたご座流星群の有痕率は眼視観測と比べると1ケタ多い。

- ・デジカメ観測による流星痕有痕率の多さは、超高感度に助け られていると考える。デジカメ観測は眼視観測と比べて (1) 見逃しが少ない

 - (2) 暗い流星による流星痕は眼視では捕獲不能?
 - (3)流星痕と認知するまで時間がかかるので、 その間に流星痕は消えてしまう。

 ・流星痕出現数の変動と流星群活動との関連はあるか? (例えば母彗星回帰を前に流星痕出現数が変化するか)

<u>METRO/NMS</u> 流星物理セミ	ナー@原宿 2014. 7.6
流星痕の色別 _{痕の光度} : 流星出現後 痕の色 : 上と同じ条件 で複数の色な ある合計(AL -5 -4 -3	光度分布 ^{後の次のコマで写った痕の最も明るい部分。 ^{牛で顕著な色を記述。少数だが1つの流星痕 を認めたものもある。その場合は痕の実数で _L)とは一致しない。 5-2-1 0 1 2 3 4 5 6 7}}
Green	3 5 7 4 10 14 12 5
Yellow	1 2 5 1
Orange	1 2
White	1 1 1 1
NoClass	1 12 30
ALL	3 5 7 4 11 19 26 35
痕	の色別光度分布(2012)

2015.2.1.第139回流星物理	聖セミナーの渋谷区神宮す	的区民会館		
○高感度デジタルー眼 流星と流星痕	レフカメラで観測し	t-		
観測日:2014 Dec.02,(全チェック	3回目)			
Check 123 hhmmss 出現夏座	光度 群/散在	Check 123 bhmmss 出現夏慶		米度 鞋/教在
(OOHUT)	-	(02hUT)		
	5 1011111111	*** 020010 かに	4	散在
	4 Phor	- * * 020108 ml=	4	散在[追加]
005324 24LP中央	-1 就在 trameout 提/初			
(01617)		(02h09m14s-02h18m40s:中間	(f)	
*** 010236	3 Pho? 111	a a second shirts		
*** 010748 オリオン	4 W#	- * * 022009 オリオン	1	散在 摄1秒[追加]
*** 011335 オリオン北部	5 散在	- * * 022433 オリオン	6	散在[追加]
* 011529 ふたご	6 散在[追加]	*** 022803 こいぬ	5	散在
*** 012105 ぎょしや東側	4 散在	*** 024320 ふたご→こいめ	1 1	散在 痕1秒
*** 012309 ふたご経路長い	1 Pho? 痕3秒	* 024340	5	Pho? 痕2秒[追加]
- ** 013759 ぎょしや→ふたご	5 散在[追加]	*** 024533 オリオン	-1	散在 遅い 痕1秒
· ** 014543 ふたこ	4 散在[追加]	- * * 024546 Stat	5	散在 [追加]
- ** 014628 ELVA	3 Pho? [追加]	- * * 024830 オリオン	5	Pho? [追加]
*** 014728 ふたご	2 Pho?			
- ** 015227 ふたご	6 散在[追加]			
*** 015916 かに	3 散在 痕2秒			

a a

○光度分布									
	-1	0	1	2	3	4	5	6	平均光度
ほうおう群 Tr			1 1	1	2 1	1	2 1		3.29
散在流星 Tr	2 2		2 2		1 1	5 1	5	2	3.47

1

2015.2.1.第139回流星物理セミナーの渋谷区神	宫前区民会館			1			
		P?	Tr	Tr2	s	Tr	Tr2
	00h46m47s-00h49m59s	1	0	0	1	0	0
	00h50m00s-00h59m59s	0	0	0	1	1	1
)ほうおう群と思われる流星と散在流星の	39回流量物理セミナーの決谷区神宮和区民会館 OOh46m47s-OOh49m59s OOh50m00s-OOh59m59s われる流星と散在流星の E出現数と流星底出現数 が発光中でも痕が認められたもの。 消度炎も痕が認められたもの。 消度準計算に使われる O1h00m00s-O1h59m59s O1h20m00s-O1h59m59s O1h20m00s-O1h59m59s O1h50m00s-O1h59m59s O1h50m00s-O1h59m59s O1h50m00s-O1h59m59s O2h00m00s-O2h99m13s Caの後撮影中断、撮影7 O2h18m41s-O2h19m59s O2h30m00s-O2h59m59s O2h30m00s-O2h59m59s O2h30m00s-O2h59m59s O2h50m00s-O2h59m59s O2h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m00s-O2h52m59s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h50m50s O1h	1	1	0	1	0	0
10万亡と派王田現政と派王政田現政	01h10m00s-01h19m59s	0	0	0	2	1	0
FL 404	01h20m00s-01h29m59s	1	1	1	1	1	0
Tr:流星本体が発光中でも痕が認められたもの。	01h30m00s-01h39m59s	0	0	0	1	1	0
いわゆる流星の尾も含む	01h40m00s-01h49m59s	2	1	1	1	0	0
Tr2:流星本体消失後も痕が認められたもの。 伝統的に有痕率計算に使われる	01h50m00s-01h59m59s	0	0	0	2	1	1
**	02h00m00s-02h09m13s	0	0	0	2	1	0
度:流星消失後3秒以内に消失する短度を指す。 以下流星度を短度とする。	(この後撮影中断、撮影)	方向	変更	()			
	02h18m41s-02h19m59s	0	0	0	0	0	0
	02h20m00s-02h29m59s	0	0	0	3	1	1
	02h30m00s-02h39m59s	0	0	0	0	0	0
	02h40m00s-02h49m59s	2	1	1	3	2	2
	02h50m00s-02h52m59s	0	0	0	0	0	0
	Total	-9-	5	2	42	9	5
	T- 9/		62 5	37	5	47.0	29 4
	11 70	7	02.5	, 37		-7.0	23.4

15.2.1

3

Gnomonic Star Atlas (J2000.0) for Meteor Observations.

1. はじめに

太陽をかすめる彗星の代表の1つに 1965 年の池 谷・関彗星がある。その後、太陽観測衛星(SOHO など) によって、太陽をかすめる小さな彗星が多数発見され るようになった。JPL の彗星軌道リストのかなりの部 分を SOHO 彗星が占めている。近日点を通過しないで 崩壊してしまう彗星が大半(ISON 彗星等)である。彗星 を観望する立場では残念だが、その残渣が地球と遭遇 するのであれば、流星ファンには別の期待、楽しみを 提供してくれることになる。

2. 太陽をかすめる彗星のグループ

サングレーザー、サンスカーターと呼ばれたりする が、<u>http://www.ast.cam.ac.uk/~jds/klist.htm</u>による分類で は次のようになる。

Kreutz group I objects (1334 comets= 69%) Kreutz group II objects (304 comets = 16%) Probable Kreutz group (4+ comets) Meyer group (117 comets = 6%) Marsden group (39 comets/returns = 2%) Kracht group I (38 comets/returns = 2%) Kracht group II (6 comet apparitions, 2/3 comets = 0%) Other comets (93 comets/returns = 5%) All SOHO and STEREO comets (2022 comets)

このうち、Marsden group と Kracht group は昼おひつ じ群、南 δ みずがめ群、さらには四分儀群に関連すると 言われている。

3. 彗星からの流星出現の可能性・出現予想

「彗星の軌道要素よりの流星輻射点の計算法と、東 京天文台での方法に就いて」(廣瀬秀雄、東京天文台報、 10,288-296,1953)を教科書として学び、大学生の時に

異なる方法で南δみずがめ群の輻射点移動を計算したことがある「輻射点の東方移動」(小関正広、星の友、19, 21-24, 1969)。この中で、筆者独自の"軌道半長径と近日点の方向を固定する"という方法を紹介している。 これは、「流星群のプロファイリングーしし群を例として」(小関正広、流星物理セミナー、2011/10/2)と同じ 発想である。以前であれば、対数表を片手にコツコツ計算するしかなかったが、現在では、ありきたりのエク セルで十分に用を足すことができる。次ページに計算画面を示す。

2行目: full_name 以下が彗星の原初軌道。

4行目以下:太陽黄経 0.1 度刻みで、地球と交差するように変化させた軌道と予想輻射点。 L列・原初軌道と変化させた軌道の Dem(ただ)」次式の第4項を除く)

原初報道と変化させた報道の
$$D_{SH}$$
 (たたし、伏氏の男子頃を除く)。

$$[D(A,B)]^{2} = (e_{A} - e_{B})^{2} + (q_{A} - q_{B})^{2} + \left(2\sin\frac{I_{AB}}{2}\right) + \left[\frac{1}{2}(e_{A} + e_{B})2\sin\frac{II_{AB}}{2}\right]$$

30行AN列: DSHの最小値。

一般に、極小値は2回現れる。

31行AN列:第1回目の極小値、AP列:第2回目の極小値

32行AN列:第1回目の極小値となる太陽黄経、AP列:第2回の極小値となる太陽黄経。

グラフは太陽黄経 0-360 度の間における D_{SH}の変化。

操作は JPL のサイトで取得した軌道要素(多少手を加える)を full_name 以下に貼り付けるだけである。貼 り付けてから、グラフが表示されるまでは<瞬く間>である。対数表を使ったら、0.1 度刻みで計算しないで、 もっとスマートな方法を考えることになるだろうが、力技で済んでしまう。

計算例として示した、C/1998 A3 (SOHO)は Marsden group の彗星であるが、本稿では主として Kreutz group を扱うことにする。まずは、 D_{SH} の数値が意味するところをよく知られている彗星・小惑星を例として考察することにする。

٦2

流星物理セミナー 2014/7/6 日本流星研究会 小関正広

近日点引数ωが 90 度または 270 度に近い場合には、2回の極小値がほぼ同じ値になり、流星活動が2回見 られることになる。1P/Halley の場合は、η-みずがめ群とオリオン群、2P/Encke の場合には、昼おうし群と夜 のおうし群となる。

ここで別の例を見てみよう。3200 Phaethon (1983 TB)と 2201 Oljato (1947 XC)はともに活動を終えた彗星核と 推定されて研究が進められているものである。3200 Phaethon (1983 TB)は、ふたご群の母天体として有力なも のだが、昼ろくぶんぎ群にも関連すると考えられている。 $\lambda s=183$ で $D_{SH}=0.40$ となっているのが、ろくぶんぎ 群に相当する。ただし、ろくぶんぎ群と直接関連するのは 3200 Phaethon (1983 TB)の兄弟分 2005 UD ではない かと言われている。また、2201 Oljato (1947 XC)は $\lambda s=79$ で $D_{SH}=0.002$ 、 $\lambda s=270$ で $D_{SH}=0.008$ となり、極めて盛 んな流星活動が期待され、前者は昼β-おうし群、 χ -オリオン群の活動領域に相当するが、他の群や散在流星の 活動に埋もれて、確実に関連すると見られる流星群は IAU のリストでも示されていない。

いよいよ「太陽をかすめる彗星」から流星が出現する可能性について見てみよう。C/1998 A3 (SOHO)は Marsden group の例であり、96P/Machholz 1 はそれから派生した彗星と推定されているものである。

Marsden group や 96P/Machholz の場合には、以上で述べた例に従えば、流星活動が見られるのは1回だけということになる。しかし、これらがδ-みずがめ群やしぶんぎ群の源泉とされるのは長期間の摂動を考慮した場合のことである。つまり、現在の軌道が似ているというよりも、過去の軌道が現在の流星群の軌道に似ているかを検討する必要がある。

しかし、この問題については、様々な研究者が詳しく研究しているのでここではそれらの結果を単純化して 説明するのにとどめる。

3D/Bielaの場合に「アンドロメダ流星雨」を生じることは先の図から理解できるが、摂動によって軌道面が 回転したらどうなるかを考えてみよう。昇降点・降交点は移動し、「アンドロメダ流星雨」を生じていた側(降 交点)は地球軌道から離れて、流星雨は出現しなくなる。これが現在の状況である。しかし、回転が続けば、 逆の側(昇降点)で地球軌道に接近して流星活動が見られるようになるはずである。 λ s=347.3 付近で昼間群と して活動するようになるという予想がなされている。

ふたご群と昼ろくぶんぎ群との関係も同様で、軌道面の回転を考えると、3200 Phaethon (1983 TB)によって λs=183.0 付近での昼間流星群が想定できるのである。

C/1983 A3 (SOHO)でも軌道面が回転すれば、λs=80.7(降交点)と逆側(昇降点)λs=156.2付近での流星活動が想定できる。これがδ-みずがめ群に相当するという考えが成り立つ。実際には摂動は軌道面の回転だけ働くわけではないので、活動時期また輻射点の位置は実際のδ-みずがめ群に近いとする計算結果が出ている。さらに長期間の摂動が働けば、しぶんぎ群の活動にも関連するという推定も提唱されている。

下図の左側が Kracht group I、右側が II である。こ の Kracht group も Marsden group に近縁のものとされ ている。Sekanina による右図を見てみよう。 $(L_{\Pi}, B_{\Pi}) =$ (100, 10)を軸として軌道面が回転したとして、しぶん ぎ群、南δ-みずがめ群、Kracht group、Marsden group・ 昼おひつじ群、96P/Machholz 1 の関係を示したもので ある。Kracht group I/II 自体は Marsden group 同様に D_{SH} の値がかなり小さくなり、流星出現の可能性がか なり高いと推定できるが、輻射点等が Marsden group のものと識別困難なほどに近い。また、これらのグ ループに属する彗星はそれほど多くない。

I 90° N CL I 60° A T I O N 30° MACHHOLZ INTERPLANETARY COMPLEX $(L_{\pi} = 100^{\circ}, B_{\pi} = +10^{\circ})$

> TYPE 2 Precursor

TYPE 3 Precursors TYPE 1 PRECURSO

30'

MARSDE

60

90°

ADRANTIDS, ASTEROID 2003 EH₁, Comet C/1490 Y1(?)

330

TYPE 4 PRECURSORS

3005

2番目に多い Meyer group を下図左側に示す。Marsden group の場合と同様のグラフであり、単純に考えれば 流星活動が見られるのは1回と考えられる。これもかなり *D*_{SH}が小さくなる。従って、そこそこの流星活動が 期待されるが、このグループに関連すると見られる短周期彗星は発見されておらず、流星活動も知られていな い。Harvard の電波観測の中には数個、DSH<0.2 となる流星が含まれる。しかし、とても流星《群》の活動を 認めることのできるレベルではない。

太陽をかすめる彗星の中で最大グループである Kreutz group の例として、C/1965 S1-A (Ikeya-Seki)を上図右 側に示したが、このグループは残念ながら D_{SH} があまり小さくならない。1P/Halley と 2P/Encke の例に見られ るように、一般に $D_{SH}<0.2$ 程度が流星活動の見られる範囲と考えられる。単純に考えれば、Kreutz group から の流星出現はありえないことになる。

しかし、Kreutz group は巨大なグループであり、実は Kracht group 同様、I/II の区別があり、さらに、降交点 (λ s~330)で C/1965 S1-A (Ikeya-Seki)よりも地球軌道に接近するものがある。その中で C/2007 X13 (SOHO)は最 も条件が良い。しかも SnotaCo ネットの観測の中に1 個だけではあるが、極めて類似した軌道をもつ流星が記 録されている。輻射点が太陽に近い方向にあることを考えれば、貴重なデータと言える。もちろん、観測困難

な状況にあるわけで、「流星群」と言えるだけの数ではない。275< λ s<335の時期について、SonotaCoネットで 得られた輻射点分布を下図に示す。Kreuts groupの輻射点が想定される(λ - λ s, β)=(310,10)付近に明瞭な輻射点の 集中は見られていない。(λ - λ s, β)=(290, 10)付近に見られる集中は λ s<290の流星によるもので、SonotaCoネッ トでは散在と判定されている流星である。電波観測は昼間群に強いはずであるが、Kreutz group と軌道の類似 する流星群は知られていない。

Kreutz group の中には降交点よりも昇降点で地球軌道に接近するものもあり、C/2007 M6 (SOHO)はその例で ある。興味深いことに、D_{SH}>0.2 ではあるが、こちらには関連する可能性を持つ観測が存在する。関連を指摘 するには程遠いとは言え、今後の注意が必要であろう。

4. まとめ

太陽をかすめる彗星の中には、Marsden groupのように流星群の起源と目されるものが存在する。一方、最大のグループである Kreutz group を起源とする確実な流星活動は残念ながら認められない。

しかし、膨大な数の太陽をかすめる彗星から、さらにそれらの彗星の祖先(太陽をかすめる彗星は近日点距 離 q<2の超長周期彗星から発生したと考えられている)からは大量の流星物質が放出されていることは明らか であり、それらの内の一部が摂動を受けて地球軌道に接近することは容易に考えられる。下図は放物線に近い 軌道の彗星(逆を言えば短周期彗星を除いた)から予想される輻射点分布である。短周期彗星や小惑星からの 輻射点分布とは異なり、地球向点方向に輻射点が多く存在する。我々が「夕方よりも朝方に流星が多く見える」 と観測するのは、太陽をかすめる彗星も含めて、放物線に近い軌道をたどる彗星を起源とする流星を見ている のであろう。

full_name	e	q	i	ω	Ω	Ι	D_{SH}	λs	α	δ	Vg	λ-λs	β	Shower
1P/Halley	0.967	0.586	162.3	111.3	58.4									
	0.966	0.605	163.2	100.6	47.2	3.5	0.047	47.2	338.6	-0.3	66.1	292.9	8.1	η-Aquariids
	0.969	0.545	163.5	85.4	31.3	-8.0	0.107	211.3	96.9	15.6	66.2	245.4	-7.7	Orionids
2P/Encke	0.848	0.336	11.8	186.5	334.6									
	0.850	0.331	1.5	242.2	278.8	11.0	0.136	98.8	86.0	22.2	29.3	347.5	-1.2	D -Taurids
	0.846	0.341	1.5	295.6	225.4	-12.3	0.152	225.4	55.3	20.9	28.9	192.4	1.2	Taurids
3D/Biela	0.751	0.879	13.2	221.7	250.7									
	0.751	0.879	13.2	221.6	250.7	0.0	0.000	250.7	26.2	46.3	15.8	151.8	32.8	Andromedids
	0.773	0.801	10.5	303.8	167.3	15.9	0.211	347.3	13.9	-17.7	17.7	18.3	-21.7	
209P/LINEAR	0.689	0.914	19.1	149.7	66.5									
	0.677	0.948	17.7	147.1	69.2	-1.7	0.042	69.2	118.7	69.7	15.3	35.1	47.7	
	0.727	0.802	11.4	56.8	161.3	23.0	0.305	341.3	139.7	-8.5	17.9	163.7	-23.0	
2201 Oljato (1947 XC)	0.713	0.624	2.5	98.2	75.0									
	0.713	0.624	2.5	94.2	79.0	-0.2	0.002	79.0	80.7	26.9	20.3	2.7	3.7	
	0.713	0.623	2.5	83.1	90.1	0.7	0.008	270.1	87.2	19.5	20.4	177.2	-3.9	χ-Orionids
3200 Phaethon (1983 TB)	0.890	0.140	22.2	322.1	265.3									
	0.794	0.262	18.2	228.0	3.0	-30.3	0.401	183.0	158.0	-4.5	28.8	338.4	-12.8	D -Sextanids
	0.881	0.151	23.2	323.9	263.4	-1.2	0.020	263.4	115.3	32.5	33.4	208.1	11.0	Geminids
C/1998 A3 (SOHO)	1	0.042	27.4	23.0	80.7									
	1	0.040	27.3	23.0	80.7	0.0	0.002	80.7	48.7	22.9	46.4	331.7	4.7	
	1	0.219	12.6	124.5	336.2	-32.7	0.435	156.2	355.3	-9.0	38.4	195.9	-6.3	
96P/Machholz 1	0.959	0.124	58.3	14.8	94.3									
	0.993	0.020	57.9	14.8	94.2	0.4	0.109	94.2	55.7	26.1	46.1	325.2	6.2	D -Arietids
C/2008 E4 (SOHO)	1	0.050	13.1	50.6	51.9									
	1	0.110	16.4	38.5	64.4	-4.6	0.082	64.4	37.8	20.4	42.6	337.6	5.2	
	1	0.174	13.4	130.9	330.0	-17.3	0.247	150.0	351.6	-9.9	40.0	198.4	-5.8	
P/1999 R1 (SOHO)	0.977	0.057	13.7	43.7	4.9									
	0.958	0.107	16.9	34.3	14.7	-4.1	0.073	14.7	347.5	1.0	38.7	334.2	5.8	
	0.930	0.176	13.5	135.7	271.3	-19.7	0.274	91.3	295.1	-27.9	35.9	200.9	-6.4	
C/2008 F1 (SOHO)	1	0.032	66.7	46.1	94.6									
	1	0.153	67.7	45.7	95.7	-1.5	0.123	95.7	58.4	39.2	47.3	328.9	18.5	
C/2007 X13 (SOHO)	1	0.008	138.3	27.7	306.0									
	1	0.055	137.7	27.3	305.5	0.7	0.048	305.5	262.7	-16.3	56.1	317.5	6.9	
SNM2008-1453	0.984	0.064	135.5	27.9	306.2		0.044	306.2	261.1	-15.1	54.3	315.1	8.0	
C/2007 M6 (SOHO)	1	0.006	124.5	115.2	42.4									
	1	0.255	121.4	119.0	49.5	6.7	0.262	229.5	97.9	4.7	57.8	228.8	-18.5	
LE-658	0.93	0.26	142.7	122.4	61.2		0.411	241.2	115.9	8.5	59.7	235.1	-12.6	
T1-143S	0.946	0.301	147.0	116.2	50.3		0.453	230.3	106.4	10.6	60.5	236.2	-11.9	(S)CMi-Aurds
NMS-61								235	109	5		235	-17	α -Canis Minorids

重野好彦

MSS資料集を2014年度版に更新しましたのでお知らせします。

http://msswg.net/ (ドメイン名を変更しました)

「第137回流星物理セミナー」のお知らせ
発表するのも話を聞くのも予約不要です。どうぞお気軽に。
日時2014年7月6日(日)13時~17時
場所 渋谷区 神宮前 区民会館 会議室1
内容 内容 太陽をかすめる彗星と流星(小関正広)
ペルセウス座流星群の眼視観測報告(東大附属中学校)
MSS資料集最新版公開(重野好彦)
募集中!
費用 300円
幹事 重野好彦(奇数回)/寺田充(偶数回)

【渋谷区 神宮前 区民会館 案内図】

至新宿	1) JR原	宿駅南口から5	5分
	2)地下鉄	明治神宮前駅 4	番出口1分
		即	∃
JR		2	】【和民(2次会)】
原宿		通	<u> </u>
駅		Laforet り	││東急プラザ
	表参	i通り	
11		地下鉄	ロッテリア
至渋谷	北	4 番出口│	
	西+東		
	南		【区民】
		I	【会館】

<u>2.資料集</u>

本資料集は2014年7月版です。

<u>2014年度資料.pdf</u>

MSS00-1-はじめに.txt MSSOO-2-ごあいさつ.txt MSS00-3-インデックス.txt MSS00-3-インデックス.xls MSS00-A-50回記念誌上.pdf MSS00-B-50回記念誌下.pdf MSS01-隕石.pdf MSS0<u>2-隕石落下シミュレーション.pdf</u> MSS03-遠征観測報告.pdf MSS04-音.pdf MSS05-解析法.pdf MSS06-観測機器.pdf MSS07-観測結果.pdf MSS08-観測理論.pdf MSS09-軌道計算研究発表.pdf MSS10-軌道計算精度.pdf MSS11-軌道計算論文.pdf MSS12-軌道シミュレ<u>-ション.pdf</u>

2013年度資料. pdf

MSS13-1-議事録.pdf MSS13-2-議事録.txt MSS14-空間密度.pdf MSS15-構造.pdf MSS16-痕.pdf MSS17-シューメーカーレビー9.pdf MSS18-出現予報.pdf MSS19-スペクトル.pdf MSS20-測光.pdf MSS21-その他.pdf MSS22-電波.pdf MSS23-同時観測.pdf MSS24-同時観測MSS-WG.pdf MSS25-同時観測理論.pdf <u>MSS26-発光.pdf</u> MSS27-輻射点.pdf MSS28-豆まき現象.pdf

3. 流星動画像

<u>6等より明るい流星動画像をDVDで配付します</u>

<u>4. 流星物理セミナー・ワーキンググループ(MSS-WG)の紹介</u> 観測報告と流星用プログラム

ユニークアクセス数

2013.06.30~2014.04.27 176PC 2014.04.27~2014.07.05 086PC (ドメイン変更)

	D	MD	П	在日日	登主		70	04 10	_	25
	Page	MB	凹 1	+. Л. Ц 1978. 10. 08	л а 5	シルロ 16	70	04.10	_	42
MSS00-1-はじめに、txt	6	0	2	1979. 02. 12	6	40	72	10.16	-	18
MSSOO-2-ごあいさつ.txt	4	0	3	04.15	4	20	73	1995.01.08	-	23
MSSOO-3-インデックス.txt	-	-	4	06.24	4	33 34	74 75	04.23 07.16	_	15 16
MSSOO-3-インデックス.xls	-	-	6	11. 11	6	35	76	10.15	-	12
MSSOO-A-50回記念誌上.pdf	174	33	7	1980.01.20	6	18	77	1996.01.07	-	27
MSSOO-B-50回記念誌下.pdf	187	34	8	03.16	8	37	78	04.07	-	17
MSS01-隕石.pdf	55	12	9 10	05.18	7	30 35	79 80	10, 13	_	19
MSS02-隕石落下シミュレーション.pdf	78	19	11	09. 28	7	50	81	1997.01.26	-	14
MSS03-遠征観測報告.pdf	225	58	12	11.16	7	35	82	04.12	-	12
MSS04-音.pdf	19	6	13 14	1981.01.18 03.20	3	? 40	83 84	07.13 10.05	_	31
MSS05-解析法 ndf	128	30	15	05.17	8	63	85	1998.01.11	5	29
hdg 史教师代 60022M	170	53	16	07. 19	7	20	86	04.19	3	25
	200	64	17	09.06	8 7	32	87	07.12	7	31
MSSO7-1110,则而未.put	209	10	10	1982.01.15	6	30 37	00 89	1999.01.10	5 8	25 34
	107	13	20	03. 21	4	26	90	04. 18	3	18
MSS09-軌道計算研究発表.pdf	187	41	21	05.16	4	45	91	07.11	5	21
MSS10-軌道計算精度.pdf	91	19	22	07.11	4	4/	92	10.1/	/ Q	25 40
MSS11-軌道計算論文.pdf	120	35	23	1983. 01. 07	8	50	93 94	07.09	5	21
MSS12-軌道シミュレーション.pdf	133	26	25	03. 08	6	36	95	10. 15	8	21
MSS13-1-議事録.pdf	53	9	26	05.08	4	44	96 07	2001.02.12	10	41
MSS13-2-議事録.txt	-	0	27	07.03 10.02	6 2	45 41	97 98	04.15	12	30 23
MSS14-空間密度.pdf	116	36	29	12. 18	7	45	99	10. 14	9	27
MSS15-構造.pdf	5	1	30	1984. 03. 11	2	32	100	2002.02.17	16	46
MSS16-痕.pdf	268	69	31	05.13	1	30 30	101	07.07	8	24
MSS17-シューメーカーレビー 9.pdf	35	8	32	07.22	4	33	102	2003.01.19	10	18
MSS18-出現予報 pdf	66	21	34	12.09	5	31	104	07.06	4	20
MSS19-スペクトル ndf	91	18	35	1985.03.17	2	20	105	10.19	4	11
MSCID-测光 ndf	10	7	30 37	06.02	4	40 28	106	2004.02.29	8 6	29 28
MOSO1_その他 ndf	270	67	38	12. 22	5	30	108	10. 24	6	13
MSS21-てい他.pd1 MSS221-ていた。pdf	270	07	39	1986. 04. 20	3	32	109	2005. 02. 20	4	11
M3322-电波.p01	210	37	40	07.06	4	?	110	07.03	4	11
MSS23-同時観測.pdT	129	32	41	1987. 01. 11	4 6	29 24	112	2006. 02. 05	9 10	22
MSS24-同時観測MSS-WG.pdf	165	44	43	04. 19	3	20	113	07.09	6	9
MSS25-同時観測理論.pdf	46	14	44	07.05	6	31	114	10.15	10	12
MSS26-発光.pdf	11	2	45 46	10.04 1988 01 10	5 1	18 17	115 116	2007.02.04	8	15 30
MSS27-輻射点.pdf	171	31	40	04. 17	7	21	117	10. 21	4	12
MSS28-豆まき現象.pdf	24	5	48	07.03	4	38	118	2008.02.17	8	14
MSS30-2009~2014.pdf	-	75	49	10. 16	7	25	119	07.06	7	18
合計	3, 619	912MB	50 51	1989. 04. 23 07. 16	0 -	32 51	120	2009. 02. 08	9 6	14 23
[MSS-001回から136回までを集計]			52	10. 29	-	?	122	07.05	6	17
_			53	1990.01.14	-	?	123	10.04	9	23
			54 55	04.15 07.15	-	? ?	124 125	2010.02.07 07.11	11 6	20 25
			56	10. 07	_	?	125	10. 10	8	27
			57	1991.01.15	-	?	127	2011.02.06	6	21
			58	04.14	-	38	128	07.03	3	15
			59	07.07	-	ა4	129	10.02	4	20

10.06

04. 12

07.05

10.04

04.11

07.04

. 10. 17

1992.01.15

1993.01.17

1994.01.16

_

07.01

10.07

07.07

10.06

2012.02.05

2013. 02. 03

2014. 02. 02

8

MSS資料集ホームページ ~ドメイン変更後~

重野好彦

MSS資料集ホームページは、2014.04.27にドメイン変更を行った <u>http://msswg.net</u> 。また次回流星物 理セミナーのお知らせコーナーを作った。2014.07.05~2015.01.31のユニークアクセス数は559PCだった。

新 🕄 http://msswg.net/ 旧 < http://meten.net/mss

「第139回流星物理セミナー」のお知らせ

発表するのも話を聞くのも予約不要です。どうぞお気軽にご参加下さい。

日時 2015年2月1日(日) 13時~17時 (確定しました)
場所 渋谷区 神宮前 区民会館
内容 流星はどこから来るのか(小関正広)
ほうおう群遠征報告(戸田雅之)
地球の衝突断面積と隕石落下速度(海老塚昇)
募集中!
費用 300円

流星物理セミナー(MSS)資料集

本資料集は2014年7月版です。

2014年度資料. pdf	<u>2013年度資料.pdf</u>
2012年度資料.pdf	2011年度資料.pdf
2010年度資料.pdf	

3. 流星動画像

:

<u>6等より明るい流星動画像をDVDで配付します</u>

<u>4. 流星物理セミナー・ワーキンググループ(MSS-WG)の紹介</u> <u>観測報告と流星用プログラム</u>

ユニークアクセス数 2012.06.28~2013.03.27 174PC 2013.06.30~2014.04.27 176PC 2014.04.27 (ドメイン変更) 2014.07.05~2015.01.31 559PC

IIビデオ同時観測により検出された流星群輻射点カタログ (IAUに登録された輻射点番号432番~443番を表記した) (MSS138用に一部のみ紹介)

重野好彦

要旨

1992年12月から2009年10月までにImage Intensifier(II)付きビデオで2点観測 し軌道の求まった3,770例の同時流星に関して、D判定及びD'判定を利用して、IAU流星 群リストと照合を行った。その結果22既知群と12未知群を検出した。IAUリストには295 群(2009年6月現在)が登録されているが、毎年定常的に出現している群は少ないことが分かっ た。またIIは8等までの暗い流星を対象としているため、得られた未知群の多くが地球向点付近 の高速で暗い流星群であった。IAUリストは流星群数が多いため全体のイメージがつかみ難い。 そこで本報告では星図上にプロットすることで読者に理解しやすくした。

観測機材

観測に用いた機材の外観とブロック図を図 1に示す。IIは浜松ホトニクス製V3287P、 またはデルフトハイテック製XX1470を使用し た。これらは第2世代IIと言われ、増幅率 は約5万倍である。1992年当時の可能な 限りの観測方式として、画像は41万画素C CDで撮影し、Hi8ビデオテープに録画し た。2005年以降はDVフォーマットでP Cに録画している。

Object 1.1. Macro CCD Lens Lens

対物レンズは交換式で、主に使用したレン

ズは Canon製 85mm F1.2、視野は12度×9度、最微恒星等級は約9.5等、最微流星等級は約8 等である。位置の平均測定誤差は約70秒角(標準偏差)、三角測量による輻射点算出の平均誤差は 約0.6度(標準偏差)である。この観測機材は約50台製造され、日本の観測者に配付されている。

著者のグループの主な観測地は群馬県赤城山(E:139°11'33″N:36°28'42″)と埼玉県秩父郡 (E:139°06'10″N:36°05'56″)(世界測地系)で、ほぼ南北に並んでおり、基線は42. 9kmであ る。視野が狭いのでファインディング星図を作成し、最大の同時率が得られるように約0.5度の 精度で視野設定を行った。

図2. II同時観測により得られた3,770例の輻射点分布

月ごとに星図を分けて理解しやすくした。

1) 左図は我々の観測した輻射点、M&Pデータの輻射点、IAUリストの輻射点を表す。 2)右図は今回検出された輻射点を表す。これには既知群、未知群が含まれる。

×印 : 我々の観測した輻射点

- +印 : M&Pデータの輻射点
- 〇印 : 地球向点(各月15日の位置)

実線の楕円(半径6度): IAUリストの輻射点295群(2009年6月現在) established meteor showers 65群は太線で表した

点線の楕円(半径7度):今回検出した未知群の輻射点

432番~443番はIAUに登録された輻射点番号

1

図2-1(1月~4月) 左図:輻射点分布 右図:検出された輻射点

図2-2(5月~8月) 左図:輻射点分布 右図:検出された輻射点

図2-3(9月~12月) 左図:輻射点分布 右図:検出された輻射点

天文回報4月号の観測指針に「輻射点の広がり」という解説を載せたが、スペースの関係で説明しきれなかった部分があるので、この場を借りて補足しておくことにする。

第1図:オリオン群の極大期に地球の進行方向を正面に見たときの位置関係

この図は、オリオン群の極大期における地球の進行方向を示すものである。地球進行方向正面を「地球向点」 と呼ぶが、星座ではかに座のあたりである。この頃、太陽は地球の進行方向から左手 90 度の方向、星座では おとめ座、スピカの方角になる。地球向点から右手 90 度が太陽の反対方向で「ANT」(アンチへリオン)と呼 ばれる。上図は展開図なので、進行方向の 180 度反対は図の左右両端になり、「地球背点」と呼ばれる。いて 座からやぎ座のあたりになる。地球の軌道面(黄道)は中心を通る水平な線で示される。座標の目盛は黄道座 標により、天体の黄経から太陽黄経を引いたものと黄緯、(λ-λs, β)で表しているので、地球向点が(270, 0)、太 陽は(0, 0)、ANT は(180, 0)である。

太陽系内での流星体と地球の運動方向と地球から観測される流星の 運動方向の関係は、地球軌道面の北側から見下ろし、地球の進行方向 を左向きで表すと、右図のようになる。ここで、*V_H、V_E、V_G*はそれぞ れ流星体と地球の運動速度、地球から見た流星の運動速度を表してい る。また、*ε_H と ε_G*はそれぞれ地球の運動方向(地球向点)と流星体の 運動方向及び地球から見た流星の運動方向のなす角度である。

今回取り上げるのは、*EH*が変化すると、*EG*はどのように変化するのかという問題である。次ページに示した図は、P/Halleyから放出された流星体が地球付近を通過するときの速さ41.6km/sで運動する粒子が地球に様々な角度で突入する様子を示したもので、地球の公転速度を

29.8km/s として流星体の運動が地球から見るとどのようになるかを表している。粒子の速さは 41.6km/s で一定として地球向点の方向から 15

第2図:日心速度と地心速度

度ずつ地球への突入方向が変化した場合(円周上から中心に向かう 1~13 の矢印)、地球からの見かけの運動方向・速度はそれぞれ中心から外に向かう 1~13 の矢印になる。

地球と粒子が正面衝突する1の場合は、見かけの速度は両者の和となり、速さは41.6+29.8=71.4km/sであり、 地球から見ると進行方向から突っ込んでくるように見える。先の図では「地球向点」からくる(地球向点が輻 射点)流星が見られることになる。一方、13の場合は粒子が地球の背後からの追突型であり、見かけの速度 は両者の差となり、速さは41.6-29.8=11.8km/sで、地球から見ると背面からやってくる流星になる。地球背点 に輻射点がある流星になる。

このように書くと、 $\vec{V}_{G} = \vec{V}_{H} + \vec{V}_{E}$ のように思われがちであるが、 V_{H} 、 V_{E} が太陽を基準とした(宇宙から見

た) ものであるのに対して、 V_G は地球から見たものなので単純に和として表すことはできない。高校で物理を選択すれば相対速度として、地球から見た場合には<地球の運動ベクトルの先から流星体の運動ベクトルの先を見る>、つまり、 $\vec{V}_G = \vec{V}_H - \vec{V}_E$ としなければならない。 もちろん、これはベクトルでの話であり、スカラー(数値)として $V_G = V_H \cdot V_E$ ではない。この例では、流星体が地球の運動方向側から突入してくるので、 V_G は V_H よりも大きくなる。逆に流星体が地球の運動方

第3図:ベクトルとしての関係

第4図:粒子が地球に向かってくる方向が変化した場合の地球からの見え方

向の後ろ側(背点)から突入してくる場合も図で示す。この場合には、 V_G は V_H よりも小さくなる。先ほど触れた下図は、この関係を連続的に示したものである。1 と 13 だけでなく、途中の変化を見ることによって、ベクトルとして扱った場合の V_H 、 V_E 、 V_G 、 ε_H 、 ε_G の関係が理解されるであろう。注目すべきは、矢印 10(地球向点からの角度が 135 度)になって、地球から見える流星の突入方向が地球向点から 90 度、つまり、ANT の方角になることである。

観測指針には木星族の彗星を起源とする流星を想定して、次の表を示した。 V_G 、 V_H 、 V_E 、 ε_H 、 ε_G の関係式は付録として詳しく示したので参照されたい。

第1表:木星族の彗星を起源とする粒子が、地球進行方向に対し様々な角度で突入する場合

• • • •			, - ,	•			• • •	- ,	2		
\mathcal{E}_{H}	0	30	60	90	120	130	140	150	160	170	180
\mathcal{E}_{G}	0.0	16.8	33.9	51.7	71.5	79.2	87.9	98.7	113.7	138.4	180.0
Vg	68.0	63.0	56.7	46.7	33.9	29.2	24.5	19.9	15.6	12.2	8.0
$\mathrm{d}arepsilon_{\mathrm{G}}/\mathrm{d}arepsilon_{\mathrm{H}}$	0.56	0.56	0.58	0.62	0.73	0.81	0.96	1.24	1.85	3.26	4.75

 $ε_H$ が 130~150 度のときに $ε_G$ は 80~100 度、つまり(λ-λs, β)=(270,0)から 80~100 度離れたところ(λ-λs, β)=(170~190, 0)になる。これが ANT に相当するので、逆に言えば、ANT は $ε_H$ が 130~150 度で地球に向かって くる粒子の群れだということになる。上図は粒子が地球軌道の外側からやってくる、太陽に接近する際の状況 を示したものであるが、流星が太陽から遠ざかる場合には、上図を中心の水平な線を対称軸として上下を入れ 替えた形になる。ANT に相当する粒子の群れが太陽を回ってくる時には、同様に $ε_H$ が 130~150 度で $ε_G$ は 80~100 度、(λ-λs, β)=(270,0)から 80~100 度離れたところ(λ-λs, β)=(340~10, 0)のところに輻射点が集中して、Helion source と呼ばれる昼間群となっているのである。

話を元に戻そう。このように、注意が必要なのは*ε*_Gが*ε*_Hに比例するわけではないことである。重要な点は、 *ε*_Hが小さいときには、*ε*_Hが変化しても*ε*_Gはあまり変化しない。つまり、流星群内で粒子の運動方向に多少の ばらつきがあったとしても、地球から観測される流星の突入方向(輻射点)に大きな違いは現れない。逆に*ε*_H が大きいときには、*ε*_Hが少し変化しても、*ε*_Gが大きく変化し、輻射点が広がることになる。

L.Kresak("Structure and Evolution of Meteor Streams", < Physics and Dynamics of Meteors>, 1968)が(地心)輻射

点が地球軌道と流星軌道との位置関係によってどのように変化するかを示しているので引用する。真ん中の列が地球の位置における流星群の広がり(太陽を基準にした宇宙空間が視点であることに注意)、上下の円・楕円が地球から見た流星群(輻射点)の広がりである。左側は流星体が地球向点から突入する場合であり、右側は地球背点からの場合である。 ϵ_G が ϵ_H に比例しないで、 ϵ_H が小さいときには ϵ_G の変化の割合は小さいが、 ϵ_H が大きくなると ϵ_G の変化は急激に大きくなる。なお、Kresakの図で上段は軌道半長径 a が無限大(ペルセウス群やオリオン群のような場合)、下段は a=2 で母天体が木星族(おうし群やジャコビニ群)の場合と考えてよい。

Fig. 2. Transformation of the true radiant area (middle row) into the apparent radiant area (above for $a = \infty$, below for a = 2) at different elongations from the apex.

一般に軌道半長径が大きい流星群は逆行型で地球向点か ら、また、木星族の場合には順行型で地球背点から突入す ることが多い。従って、ペルセウス群やオリオン群はおう し群やジャコビニ群よりも見かけ上、輻射点の広がりは小 さくなる。

L.Kresak("The Dispersion of Meteoroids in Meteor Streams. I. The Size of the Radiant Areas", BAC, 21(1970), 153-170.)は、 さらに地球から見た輻射点の広がりと流星群の太陽を基準 とした宇宙空間(地球軌道の位置)での広がりについて詳 しく説明している。先ほどの模式図を数値で示したものが 次の表である。W=1km/s というのは、流星群内での流星体 の運動方向・速度の違いを 1km/s と仮定して求めた数値で あることを意味する。この数値は写真観測の結果と比較し て妥当なものであることが示されている。2行目の a は先 ほどと同じ軌道半長径で、この場合には5通り示されてい る。次の Q_H は W=1km/s の仮定をベクトル的に考えて、流 星体が流星群の中心線となす角(宇宙空間における輻射点 の広がりと考えられる)を求めたものである。 ϵ_H の欄は ϵ_H が 0~180 度まで変化したとき、 ε の欄は ε が 0~180 度まで 変化したとき、それぞれ地球から見た流星輻射点の分布が 中心から何度広がるのかを示している。

Kresak はこの論文で、主要流星群の輻射点の広がりを写 真観測のデータから図示している。W=1km/s とした場合に 計算される輻射点の広がりが図中に円で示されている。こ の当時に得られていた写真流星のデータは多くないが、お

	а	1	2	5	10	8
		0	0	0	0	0
(е _н 0 30 60 90 120 150 180	1.924	1.571	1.434	1.396	1-360
<u> </u>	0	1		1]
	0	0.962	0.865	0.821	0.809	0.797
	30	0-996	0.895	0.850	0.837	0.824
	60	1.111	0.997	0.945	0.930	0.916
817	90	1.360	1.217	1.150	1.130	1.111
	120	1.924	1.703	1.593	1.559	1.528
	150	3.716	3.126	2.788	2.687	2.593
	180	(∞)	8.559	5.631	5.084	4.644
		<u>.</u>	}			. <u></u>
	0	0.962	0.865	0.821	0.809	0.797
	30	1.111	0.970	0.911	0.894	0.879
	60	1.924	1.408	1.262	1.223	1.189
Ec.	90	(∞)	2.720	2.151	2.028	1.924
U.	120	(∞)	5.255	3.666	3.361	3.113
	150	(∞)	7.633	5.076	4.597	4.211
	180	(∞)	8.559	5-631	5.084	4.644

第2表:Kresakによる輻射点の広がりの推算値

おむね、W=1km/s という仮定が妥当であり、粒子の地球に対する突入角により、流星群の輻射点の見かけの 広がりが大きく変わることが明瞭に示されている。

Table VIII $\rho_G (W = 1 \text{ km/s})$

Fig. 1. The observed dispersion of apparent radiants of meteor showers corrected for the diurnal motion. Co-ordinates $\Delta \alpha_G \cos \delta_G$ and $\Delta \delta_G$, markers by 1°. Full lines, direction to the poles of the ecliptic; dashed lines, direction to the Earth's apex; circles, computed maximum deviations ρ_G for W = 1 km/s.

第6図:Kresakによる輻射点の広がりの推算値と観測値の比較

[補注1]

 V_G 、 ε_G と V_E から ε_H 、 V_H を求めるのが、流星観測により軌道を求めることであり、 V_H 、 ε_H と V_E から ε_G 、 V_G を求めることが彗星(小惑星)軌道からの輻射点予報にあたる。実際には三次元のベクトルを成分に分解して計算するため、三角関数が登場するので難しく見えるが、原理はベクトルの加減であり、中学校の理科で学習する力の作図と同じことである。

[補注2]

GHが小さいときには、GHが変化してもGGはあまり変化せず、GHが大きいときには、GHが少し変化しても、GGが大きく変化するということは、輻射点の広がりの問題だけでなく、流星の出現数と流星群の空間密度の問題にも大きくかかわってくる。もちろん、GHが大きいと地心速度(流星体に対する相対速度)が小さくなることによって、流星群内を単位時間に通過する距離が異なることが一番大きな要因である。雨の中を走行する自動車のフロントには雨粒が多く当たるが、リアウィンドには少ないことと同じである。さらには、地心速度が小さくなると、流星の発光量が減少するので、粒子の空間密度が同じであってもGHが大きい流星群の出現数は少なくなる。出現数が少ないことに加えて、輻射点の広がりが大きくなると、通常の眼視観測では「流星群」に属するとか否かの判定が極めて困難になってしまうのである。

$$\begin{aligned} [ftig] V_{GV}, V_{FV}, V_{FV}, son, son, colling density \\ &= \hbar m B C (Cov) V(T), T m density \\ &= \hbar m B = \frac{b}{\sin A} = \frac{c}{\sin C} \\ &= \frac{b}{\sin A} = \frac{c}{\sin A} \\ &= 2 + \frac{c}{\sin A} = \frac{c}{\sin A} \\ &= 2 + \frac{c}{\sin A} = \frac{c}{\sin A} \\ &= 2 + \frac{c}{\sin A} = \frac{c}{\sin A} \\ &= 2 + \frac{c}{\sin A} = \frac{c}{\sin A} \\ &= 2 + \frac{c}{\sin B} = \frac{b}{\sin A} \\ &= 2 + \frac{c}{\sin B} = \frac{b}{\sin A} \\ &= 2 + \frac{c}{\sin B} = \frac{b}{\sin B} = \frac{b}{\sin B} \\ &= \frac{b}{\sin B} = \frac{b}{\sin B} \\ &= \frac{b}{\cos C} \\ &= 1 + \frac{c}{a} \\ &= \frac{b}{\cos C} \\ &= 1 \\ &= \frac{b}{\cos C} \\ &= 1 \\ &= \frac{b}{\cos C} \\ &= 1 \\ &= \frac{c}{\left(1 - \frac{b}{a} \cos C\right)_{a}} = \frac{b \sin C}{a - b \cos C} \\ &= 1 \\ &= 1 \\ &= \frac{b}{\left(\frac{b}{a} + \frac{b}{a} + \frac{c}{a} + \frac{c}{a - b \cos C}\right)^{2}} \\ &= \frac{b \sin C}{\left(1 - \frac{b}{a} \cos C\right)_{a}} = \frac{b \sin C}{a - b \cos C} \\ &= 1 \\ &= 1 \\ &= \frac{c}{V_{k} + V_{k} \cos s_{k}} \\ &= \frac{c}{a + b + V_{k} \cos s_{k}} \\ &= \frac{c}{c + a} \\ &= \frac{c + a}{c + a} \\ &= \frac{$$

[おまけ] 2013 年のビデオ流星に Kresak の輻射点の広がりをあてはめたものを次ページに示す。破線は地球向点の方向。

SonotaCo Network データから見る地球速度による流星群の放射点への影響 土屋 智恵

·研究目的

本研究では、SonotaCo Network に集められたデータにおいて、地球速度を考慮すること によりその年に出現が確認されていなかったり、これまでに検出されていない流星群を見 つけ出すことを目的とする。新たな流星群候補を見つけ出すことで、流星群の活動や出現 状況により、その流星群の母天体である彗星や小惑星の活動について予測できる可能性が ある。

・原理

しし群やオリオン群など高速の流星群は放射点が集中しているが、10月りゅう座(ジャ コビニ)流星群などの低速群は放射点の広がりが大きく、放射点が離れていても軌道要素 は似ている。流星群ごとの速度の違いは、流星物質の突入方向によるものであり、放射点 分布の範囲は流星物質の速度に依存することがわかっている。(詳しくは第136回流星物理 セミナー 低速流星群の放射点分布に対する修正効果(佐藤幹哉氏)の資料を参照)

・方法

本研究では SonotaCo Network に集められた 2007 年~2013 年までの流星輻射点のデー タセットを使う。今回は予備実験として、2008 年 11 月に出現が予測されており、低速で あることでも知られているほうおう座流星群が SonotaCo Network でも捉えられていたの か、地球速度を考慮した計算を行い、放射点の分布から検出できるのか試みる。比較のた めに 2007 年~2013 年までの 11 月のデータについても同様の計算を行う。地球の速度ベク トルなどのデータは Horizons のデータを用いる。

・結果

2008 年 11 月の流星放射点の元のデータを使用し放射点の分布を黄経黄緯で表したもの からは、毎年定常的に活発な活動を見せているしし群、おうし南・北群、オリオン群の集 まりが見られる。しかし、予測されていたほうおう群の黄経黄緯には流星群と見られる集 まりは確認できない。地球速度を考慮し、放射点分布を示すとほうおう群と見られる流星 の集まりが確認できた。さらに、修正前には見られなかったいくつかの放射点の集まりが あることがわかった。

また、2007年~2013年の11月も同様について調べたところ、ほうおう群と見られる放 射点の集まりは見られなかったが、2011年と2013年にうみへび群の集まりが2つにわか れていることがわかった。

2008年11月 修正後

90

2013年11月 修正後

2011年11月うみへび群

2013年11月うみへび群

・考察

地球速度を考慮して計算した結果、ほうおう群のように低速の流星群には地球速度の影響が大きく、しし群のように高速の流星群では放射点の位置や集まりにさほど変化は見られなかった。この結果からも低速であるほど地球速度が与える影響は大きく、放射点の広がりが大きくなることがわかった。したがって、今までにも低速である流星群の出現が見落とされてきた可能性もあり、流星群とはみなされなかったものもあるのではないかと考えられる。

それに加えて、地球速度を考慮することで元のデータからは見えてこなかった放射点の 集まりが見えてきた。うみへび群に関しては速度が低速ではないにも関わらず放射点が集 まったのは、周りの散在流星の放射点の位置が変わったことによるものではないかと考え ている。以上のことより、これまでの軌道要素からだけではなく、放射点分布から流星群 を見つけ出す方法も有用だと言える。

・今後について

SonotaCo Network にあるデータのすべてにおいて地球速度を考慮した計算を行い、これ までに活動が確認できていない流星群を検出できるか探ってみる。また、流星速度がどの くらいから地球速度の影響を受けやすいか、放射点はどの程度の広がりを見せるのかとい う検証も必要である。

また、うみへび群についても詳しく調べる必要がある。

1. はじめに

「どこから」というのには2つの意味がある。一つは地球上で観測して「どの方向から飛来するのか」であ り、もう一つは「何を起源とするのか」ということである。もちろん両者には関係があり、起源によって飛来 方向が規定され、逆に飛来方向から起源を推定することも可能である。本稿は流星の飛来方向を分析すること によって、<流星>は何を起源とするのかということに迫る試みである。

2. 流星の飛来方向

1. 卓越する飛来方向

流星の飛来方向としては、(1)地球進行方向(Apex)、 (2)太陽方向(Hellion)、(3)反太陽方向(ANT)、(4)トロイ ダルグループ(Toroidal)の4方向が卓越すると言われ ている。これは 1960 年代に行われたハーバード・ス ミソニアンのレーダー観測によって指摘されたもの である。(4)は Adelaide の南半球からの観測によって 南北両方向に存在することが確認された。

上の図は Harvard の 1961-65 年の観測、下の図は Adelaide の 1960-61、1968-69 年の観測で、図に示す 囲み線は、 $(\lambda-\lambda s,\beta)=(270,0)$ 、 $(\lambda-\lambda s,\beta)=(340,0)$ 、 $(\lambda - \lambda s, \beta) = (200, 0), (\lambda - \lambda s, \beta) = (270, 65), (\lambda - \lambda s, \beta) = (270, -65)$ をそれぞれ中心とする半径 30 度の円である。図法の 関係で歪んで見えるが、それぞれが(1)~(4)の飛来方向 を表している。

電波観測では、主要流星群であっても輻射点は際 立った存在とならず、(1)~(4)への輻射点集中が顕著で ある。

2.2.観測方法と飛来方向

まずは、この4つの飛来方向が他の観測でも確認 Figure 2 Adelaide 1960-61 & 1968-69 できるのか検証しよう。

日本の眼視観測(NMS)では、この4方向への集中は明確ではない。これは Denning、Hoffmeister、AMS 等の 観測でも同様である。基本的に(1)~(4)の飛来方向は眼視観測によっては<散在>と認識されるためと考えられ る。複数の流星の飛跡が輻射点(流星群)の存在を

認識させるために必要である以上、眼視観測におけ る輻射点分布とレーダー観測や写真同時観測におけ る輻射点分布とは区別して考える必要がある。

しかし、実際に NMS で観測された輻射点分布は写 真観測の分布によく似て、両者ともに、主要流星群 の存在が際立っている。これは後で述べるように観 測される流星体の大きさが電波と眼視・写真とでは 異なっていることによる。

その他、ANT における輻射点の集中がともに見ら れ、ANT から Toroidal(N)の西側にかけて弧状に輻射 点密度が高くなる傾向が両者に共通している。

Apex 方向の輻射点は、やや眼視観測の方が多く、 写真観測では集中は明瞭ではない。

CCD や II の観測でも、主要流星群と ANT への輻 射点集中は明瞭である。この他、CCD と II の観測で は、眼視や写真に比べて Apex 方向での輻射点増大が 強く認められる。

総じて、光学観測では、電波観測に比べて、Toroidal 方向における輻射点集中は明瞭ではなく、主要流星 群とANTへの集中が卓越していると言える。4方向

Figure 1: Harvard 1961-65

Figure 3: Visual observations (NMS)

Figure 4: Photographic observations

流星物理セミナー2015/2/1 日本流星研究会 小関正広

Figure 5: CCD observation (2013 SonotaCo)

Figure 6: II observations

3. 彗星と流星

流星は彗星または小惑星に由来すると考えられ、特に彗星が母天体として重要と考えられてきた。前2回の 発表では、非周期彗星、小惑星を取り上げた。本報告では周期彗星を扱うこととする。

JPL Small-Body Database Browser(http://ssd.jpl.nasa.gov/sbdb.cgi)からダウンロードした周期彗星のデータによ ると(昨年4月)、Deadと付されているものも含め、番号は1~297であるが、分裂した核も含めると365個の 周期彗星が存在する。これらから、D<0.5の条件によって74個の彗星から126個の輻射点が求められた。

Figure 7: Estimated radiants from periodic comets

ほとんどの輻射点は、輻射点集 中域とされる4つの領域の外側に 位置している。非周期彗星による 輻射点が Apex、小惑星による輻射 点が ANT と Hellion に集中してい るのとは極端な対比をなしている。 さらには、先に取り上げたいずれ の観測手段によっても周期彗星か ら予測される輻射点領域の流星は 多くないことは注目される。

右の図は、予想輻射点の天球上 における単位面積当たりの密度を 最大10に規格化して示したもので ある(ただし、今回は SOHO によ

Figure 8: Periodic comets, nonperiodic comets and asteroids

る太陽をかすめる彗星群を除いている)。横軸は Apex からの離角(ε_A)を表す。3者の違いは明瞭である。少な くとも、我々が見ている「流星」の多くについて、起源を彗星に求めることは妥当でなさそうである。

4. 検討:流星はどこから来るのか、起源はどこにあるのか

4.1. 観測方法による違い

先に見たように、観測方法に よって見える流星の飛来方向は異 なっている。観測方法ごとに第8 図と同様な輻射点分布の密度を周 期彗星、非周期彗星、小惑星によ る予想輻射点と比較してみよう。

右図は、II と CCD(SonotaCo 2013)から得られた輻射点より、群 流星とされているものを除いたく 散在流星>の輻射点分布密度であ る。II と CCD ではほぼ一致した傾 向を示している。Apex 方向が卓越 し、非周期彗星からの予想輻射点 分布に近いことが分かる。

10 8 nonperiodic comets 7 asteroids 6 5 × 4 3 2 60 150

Figure 9: II and CCD observation with the estimates

逆に言えば、Ⅱと CCD では、周期彗星と小惑星を起源とする流星をほとんど捉えていないことになる。 II と CCD では、かなり特性が異なり、II は CCD で捉えることのできない暗い流星が主体である。それにも かかわらず、CCD が II と同様に Apex 方向の流星を多くとらえているのはなぜか。この問題については、次 項(4.2)で取り上げることとする。

次に電波観測を取り上げる。電 波観測の軌道データには、流星群 への帰属は記されておらず、また、 先に述べたように電波観測におけ る流星群の流星数の比重は相対的 に低いので、ここでは全流星の輻 射点分布密度を示している。

II や CCD 同様、Apex 方向の流 星が多く、非周期彗星を起源とす る流星を捕えていることが推察さ れるが、注目すべきは Apex からの 離角が60度付近で密度が最大とな ることである。つまり、Toroidal と呼ばれる領域の流星が圧倒的に

ここで Toroidal は軌道にどのよ うな特徴をもつのか、起源はどこ にあるのか簡単に考察しておこう。

右図は、6つの流星群について 他の軌道要素は変化させず、軌道 傾斜角のみ360度回転させると輻 射点がどのように変化するのか示 したものである。

Toroidal 領域にまで輻射点が移 動するのは、ジャコビニ群、ペル セウス群、κ-はくちょう群である。 昼間おひつじ群、おうし南群、オ リオン群は比較的狭い範囲にとど まる。後者は軌道傾斜角が±90度

Figure 10: Havard 1961-65 with the estimates 多いという点である。しかし、第10図から分かるように Toroidal に直接結びつく天体は存在しない。

Figure 11: RP drifts by the orbital inclination

前後になっても、輻射点の黄緯が±90度に近づくことはない、前者は軌道傾斜角が±90度に近い場合には Toroidal の領域にまで移動する。

前者と後者との違いは、近日点引数にある。つまり、近日点の近傍で地球軌道に交差するか否かである。 Toroidalの流星は近日点・遠日点が地球軌道付近にある、軌道傾斜角が大きい流星体なのである。起源は周期・ 非周期彗星の(または単独で飛来する)流星物質の軌道が何らかの原因で変化したものと推定される。

最後に写真流星について考えてみよう。 ◇でしめしたものが、群流星を除いた流 星全体の分布である。ほぼ、非周期彗星 と小惑星のところにピークが一致してい ることが分かる。つまり、写真観測は、 2つの起源をもつ2種類の流星を捕えて いると考えられる。

ここで、質量が求められているものか ら質量が1g以上の写真流星に限定して、 改めて第13図に輻射点分布を示す。

第4図と比較すれば、Apex 方向の流星 が大幅に減少している様子が分かる。こ の点については、CCD がなぜ、Apex 方向 の流星を多数記録しているのかという問 題と合わせ、次項で検討する。

第12図に質量が1g以上の写真流星の分布を■で 示した。質量が1g以上の流星はほぼ完全に小惑星に よる輻射点分布と一致している。写真流星のうち、 Apex 方向から来るものは、ほぼ質量の小さいものに 限られ、質量の大きいものがANT(正確にはANTの 中心より西側)領域からやって来ているのである。 前回の発表で「隕石の起源は小惑星と考えられる」 と結論付けたが、同様に写真流星の半分はマイクロ 隕石で小惑星と同一起源と見てよいであろう。

Figure 12: Photographic meteors with the estimates

Figure 13: Photographic meteors (mass>=1g)

<u>4.2.周期彗星を起源とする流星はなぜ少ないのか</u> 彗星から予想される輻射点について、地心速度の分布を以下に示す。

Vg	0~5	5~10	10~15	15~20	20~25	25~30	30~35	35~40	40~45	45~50	50~55	55~60	60~65	65~70	70~
Ν	0	5	47	34	17	7	4	2	1	2	1	1	0	3	2

輻射点が地球進行の背面方向に多いことから推測されるように、地心速度 20km/s 未満が 86/126=68%と圧倒 的多数である。小惑星や非周期彗星に比べて周期彗星の数が少ないだけでなく、地心速度が小さいということ により、観測される流星数が少なくなると考えられる。

流星が観測・記録されるには一定程度の光度が必要であるが、この光度に流星体の質量だけでなく、速度が 大きく影響している。先に NMS 同報でも取り上げられたが、スーパーシュミットにより撮影され、詳しく測 定された 413 個の流星から高度と質量等の関係を表す式として Jacchia は次の式を求めている。

 $M_{\rm max} = 55.34 - 8.75 \log v_{\infty} - 2.25 \log M_{\infty} - 1.5 \log \cos Z_R$

類似の式は様々な研究者によって報告されている が、以下ではこの式を用いて考察する。

lgの質量をもつ流星体が様々な対地速度と天頂離角(輻射点高度ではないことに注意)で大気に突入するとどのような明るさの流星になるかをグラフ化すると右図のようになる。

地心速度 v_s と大気圏外速度 v_∞ には次のような関係がある。

 $v_{\infty} \approx \sqrt{v_g^2 + 125}$

 v_g =15のとき、 v_∞ =18.7であるから、周期彗星からの流星の大多数は右図のv=20の線にあてはまる。 v=20とv=70の場合を比べると、実に4.76等級の差

Figure 14: Magnitude change with velocity and Z_R

になる。また、Jacchiaの式で質量を 0.1(g)に変えて考えたとしても、この差に変化はない。 $\Delta M_{\rm max} = 8.75 \times (\log 70 - \log 20) \approx 4.76$

さらに、彗星からの予想輻射点が地球進行の背面(背点)、つまり、日没時の天頂方向であり、夜間の観測 では輻射点の天頂離角が大きくなる(第14図で右側)ことを考慮すればこの差は一層大きくなると推定でき る。v=70となるのは交点方向からの流星であり、夜半過ぎから夜明け前の観測時間では背点の場合より輻射 点の天頂離角が小さいと考えられるからである。従って、以下の考察で向点方向の流星と背点方向の流星では、 同じ質量でも4.76等級の光度差があるとみなす。

この光度差は観測し得る流星体の質量に大きく影響する。この4.76 等級の差が流星体の質量だけによってもたらされるとすると、

 $\Delta M_{\max} = 2.25 \log \Delta m_{\infty} = 4.76$ から、 $\Delta m_{\infty} = 10^{4.76/2.25} \approx 130$ 、 つまり 2 桁以 上の質量比になる。この関係をグラフ化したものが右図である。通常の 光学的観測(写真・CCD)では、v=20の群は0.1(g)の流星体までしか捉 えられないのに、v=70の群では0.001(g)或いはそれ以下の流星体まで捉 えているということになる。

次にこのような違いが観測され得る流星数にどれだけの影響を及ぼ すのか考察しよう。m 等級の流星数 N は m₀等における流星数を N₀、光 度比をrとすると次のように表せる。

 $N = N_0 \cdot r^{(m-m_0)}$

ここで、仮に $m_0=0$ 、 $N_0=1$ と置く。r=2.5とすると、これはよく見ら れる流星群の活動状況を表していることになる。Kresakovaの視認率を Figure 15: Mass-magnitude relation 最微等星=6.5 として適用した場合には次の表に示した流星が出現して

いること	とを仮定	したこと	とに相当	すること	:が分か	る。以下	「で用い	る Z _R =0	と考えれ	ιば、Ζ	HR=11.0	に相当 [、]	する。
等級	-4	-3	-2	-1	0	1	2	3	4	5	6 合	計	
流星数	0.0	0.1	0.2	0.4	1.0	2.5	6.3	15.6	39.1	97.7	244.1		
視認率	0.95	0.87	0.73	0.57	0.48	0.42	0.343	0.232	0.064	0.008	7E-05		
観測数	0.02	0.06	0.12	0.23	0.48	1.05	2.14	3.63	2.50	0.78	0.02	11.0	

 $m_0=0, N_0=1$ という設定を v=20と v=70にあてはめると、 $m_0=0$ となる流星体の質量はそれぞれ、0.488g、0.004g であり、v=20 に比べて v=70 では、小さい流星体の個数を1個と考えていることになる。

先ほどの式の対数をとると、

 $\log N = m \log r$

一方、Jacchia の式で質量以外の項を定数項として C で表すと、

 $M_{\rm max} = C - 2.25 \log M_{\infty}$

この M_{max}に流星の等級と流星数の関係を代入して整理する。 $\log N = (C - 2.25 \log M_{\odot}) \log r$

これにより、異なる対地速度の群について、同じ光度で同数の流星 数を観測するときに、流星体の質量にどのような違いがあるのかが分 かる。この関係を v=20、r=2.5、M_∞=1(g)、Z_R=0 の場合で v=70、r=2.5、 $M_{\infty}=1(g), Z_{R}=0$ の場合と比較したものが右図である。このようにvだけ が異なる条件で、流星体数の比は次式から約78倍ということになる。

 $\log \frac{N_{\nu=20}}{N} = -8.75 \times (\log 20 - \log 70) \times \log 2.5 = 1.894$ $N_{v=70}$

つまり、右図で2つのグラフの差は v=20 と v=70 の流星群について 同じ光度ではなく、同じ質量の流星数の比を表している。

前述の表が ZHR を表していると考えれば、これらの直線を任意の範 囲で積分し、観測視野面積、観測時間(3600秒)、大気圏外速度で割るこ とにより、任意の等級に相当する流星体の空間密度を求めることがで きる。観測視野面積を仮に 5000km²とすると、1g以上の流星体の空間

密度は v=20の群で 3.75×10-9(個/km³)、v=70の群で 1.37×10⁻¹¹(個/km³)となる。つまり、同数の流星を観測する とき、空間密度で約274倍の違い(大気圏外速度が異なるので、その比が差を増大して78の3.5倍になる) があることを意味する。言い換えると、同じ空間密度であれば、観測流星数には約274倍に違いを生じること になるのである。これが光学観測(特に CCD)で Apex 方向の流星が卓越する理由である。

電波観測においては、Apex 方向の流星も光学観測に比べて少なくなる理由がある。大気圏に高速で突入す る Apex 方向の流星は発光点高度が高くなる。これは、光学観測では何の障害にもならないが、電離層という 電波を反射する存在により、それ以上の高度における流星からの反射波を観測できなくなるのである。つまり、 電離層によって、高速の流星は一部が遮蔽されてしまい、電波観測では光学観測より流星数が少なくなるという宿命的な問題が存在している。

5. まとめ

流星体が流星として観測されるには、発光(プラズマ生成)がなされなければならない。これには対地速度 が大きいものほど有利である。非周期彗星の多くは逆行軌道をもち、それを起源とする(或いは彗星雲からやっ てくる)流星体は Apex 方向から地球大気に突入する。従って、それらの対地速度は大きくなり、小さな流星 体でも十分観測し得る明るさとなる。小惑星を起源とする(或いは小惑星帯からやってくる)流星体は ANT 方向から大気に突入する。この場合には、Apex 方向より突入速度は小さくなるが、大きな粒子が多いことが 想定され、多数の流星が観察される。周期彗星を起源とする流星体(或いはそれらの末裔)は Antapex 方向か ら突入することになり、速度は小さくなる。従って、これらが流星として観測されるのは、よほど空間密度が 高い場合に限られるのである。彗星を直接の起源とする流星が見られるのは彗星核から放出されて時間が経過 していないか、摂動の影響が小さく空間密度が極めて高い一部の流星群の場合に限られるのである。

最初に示した、4つの飛来方向は電波で観測されるものであり、光学観測される流星のかなりの部分は、 Apex 方向からの微小流星体、そして、ANT 方向からの小惑星と起源をともにする比較的大きな流星体なので ある。彗星を起源とするものは、むしろ特殊な場合と考えていいだろう。

6. 補足:主として П.Б.Бабаджанов, «Метеоры и их наблюдение» による 流星体の大気中での運動

$$M \frac{dv}{dt} = -\Gamma S \rho v^2 \qquad F = ma = S \rho v \times (-\Gamma v)$$

M;流星体の質量、v;流星体の速さ、Γ;流星体の正面抵抗係数、S;流星体の断面積、ρ,大気密度 流星体によって、排除される大気の単位時間当たりの運動エネルギー

$$K = \frac{1}{2}S\rho v^{3} \qquad K = \frac{1}{2}mv^{2} = \frac{1}{2}S\rho v \times v^{2}$$
$$\frac{dM}{dt} = -\frac{\Lambda}{2Q}S\rho v^{3} \quad \frac{dM}{dt} = -\frac{\Lambda}{Q}K$$

Λ;熱伝導係数(運動エネルギーが流星体に伝えられる割合)、Q;蒸発熱(石質でも鉄でもほぼ 8×10^{3} [J/g]) dM v^{2} 1 。

$$I = -\tau \frac{dM}{dt} \frac{v}{2} \qquad I = -\tau \times \frac{1}{2} \Delta m v^2$$

τ,流星体の運動エネルギー(減少)が光エネルギーに変換される割合

Öpik は肉眼の波長(4500-5700Å)による感度曲線、恒星の光度と太陽光度との比較、太陽の可視光域の放射を 検討して、次の関係を導いている。

 $m = 24.3 - 2.5 \log I$

これら様々な仮定を用い、さらに数値を想定することによってババジャノフは次式を導いている。

$$I_{\max} = \frac{2\tau}{9H^*} M_{\infty} v_{\infty}^3 \cos Z_R$$

$$\tau = 5.25 \times 10^{-10} v \qquad (m < 0)$$

m>=0の場合、

$$\tau = \frac{2 \times 10^3}{v} >= 17 (\text{km/s})$$

τ=6.8×10⁻¹⁰*ν* 10<*ν*<17(km/s) H*=5.64(km) (標準大気の密度を流星の出現領域 H=90(km)で指数近似するための定数)

これらを組み合わせて、ババジャノフは明るい流星について、

 $M_{\rm max} = 63.50 - 10 \log v_{\infty} - 2.5 \log M_{\infty} - 2.5 \log \cos Z_R$

また、暗い流星について、

 $M_{\rm max} = 32.0 - 5.0 \log v_{\infty} - 2.5 \log M_{\infty} - 2.5 \log \cos Z_R$

と理論的に導いている。しかし、実際にソビエトにおける 300 個の明るい写真流星からは、

 $M_{\rm max} = 49.7 - 8.0 \log v_{\infty} - 2.0 \log M_{\infty} - 1.5 \log \cos Z_R$

本文中で引用した Jacchia の式も観測値から求められたものである。

 $M_{\rm max} = 55.34 - 8.75 \log v_{\infty} - 2.25 \log M_{\infty} - 1.5 \log \cos Z_R$

<u>理論値には仮定が多く、また、観測値については使用した観測手段、流星に差があるので、これらの式はどの ような観測方法についても厳密にあてはまるわけではない。桁数のレベルで扱う(使用する)ことが適切と言 える。</u>