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Anomalous Sounds from the
Entry of Meteor Fireballs

Sometimes very bright meteors known
as fireballs are heard before they are
seen. This apparent violation of the nor-
mal mechanisms of acoustic propagation
has been a long-standing problem in me-
teoritics. According to Romig and Lamar
(1), the problem was recognized almost
200 years ago by Sir Charles Blagdon ),
Secretary of the Royal Society of Lon-
don. He collected reports of a large fire-
ball and was perplexed by the simultane-

Colin S. L. Keay

effects produced by infalling meteorites
has been published by LaPaz (3}, and
many more recent instances have been
cataloged by Romig and Lamar (¢). Psy-
chological explanations of the sounds
were questioned long ago by Udden (5),
whose detailed study of observations of
the Texas fireball of October 1917 led
him to ask if the sounds could be due to
some form of electric energy. In his text
on meteoritics, Nininger (6) drew atten-

Summary. A very bright fireball observed over New South Wales in 1978 produced
anomalous sounds clearly audible to some of the observers. An investigation of the
phenomenon indicates that bright fireballs radiate considerable electromagnetic ener-
gy in the very-low-frequency (VLF) region of the spectrum. A mechanism for the pro-
duction of VLF emissions from the highly energetic wake turbulence of the fireball is
proposed. Trials with human subjects revealed a very extended range of thresholds
for the perception of electrically excited sounds among a sample population, particu-
larly when the VLF electric field excites surface acoustic waves in surrounding ob-
jects. This fact, together with variable propagation effects and local conditions, can
account for the sporadic distribution of reports of anomalous sounds from fireballs and

auroras,

ous observations of hissing sounds heard

as the fireball passed more than 50 miles

from the observers. He was so con-
vinced of the veracity of the observa-
tions that he would not reject the anoma-
]y and detjded that he *“*would leave it as
/pomt ‘to b, cleared up by future observ-
',pl;s“ It&must be stressed that these

.ot anomalous sounds are not to be confused

with” the .normal acoustic phenomena—
sonic booms and rumbles—which travel
at normal velocities and are heard some
time after the fireball has passed the ob-
SErver.

An interesting summary of all of the

The author is associate professor of physics at the
University of N:wcuu: New_Socuth Wales 2308,
Australia. - s
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tion to instances where the sensation of
sound quite clearly preceded visual ob-
servation of fireballs and rejected opin-
ions denying the existence of a physical
phenomenon. Ingalls (7) quoted in full a
specific account of noises produced by a
large fireball which was observed by a
geophysicist, B. W. Hapke, and his wife
near Ithaca, New York, in 1960. Hapke
stated, **The hissing and crackling noises
were definitely associated with the mete-
or, although we cannot be sure whether
or not they appeared to be coming direct-
ly from the meteor or from all around
us.”

The search for a physical explanation
of these sounds has led to some bizarre
suggestions, such as Khan's (8) hypothe-

SCIENCE

M97 - bsr

sis that the sounds are produced in the
immediate vicinity of the observer by
matter associated with the meteor and
traveling at a similar speed. Much more
defensible is the suggestion by Hughes
(9) that **Considerable radiation must be
produced by the fireball in regions of the
electromagnetic spectrum other than the
visual and this could provide a possibie
explanation.”” Such radiation has not yet
been identified in association with a fire-
ball, but this is not very surprising since,
as Hughes points out, **‘anomalous noise
seems to be associated with brighter fire-
balls (average magnitude —13) which are
rare objects indeed.”’

Not only are the anomalous sounds
rarely produced, but their perception
threshold varies rather widely among the
population. Such was the case with a re-
cent large fireball event in Australia.

Observational Data

In the early morning of 7 April 1978 a
large fireball of visual magnitude -16
passed over the east coast of New South
Wales, Australia, including the metro-
politan arca of the city of Sydney, 2nd
was seen by hundreds of witnesses.

At an early stage, it became evident
that any resulting meteorite or meteor-
ites would have descended into the seca
approximately 70 kilometers offshore.
However, one-third of the eyewitness
reports described anomalous sounds
coincident with the passage of the fire-
ball. These prompted a more extensive
investigation, including personal onsite
interviews.

Most of the reports of anomalous
sounds bear a close resemblance to those
quoted by Romig and Lamar (). They
strongly suggest that the passage of a
fireball generates a real physiological
sensation in many, but not all, observ-
ers, which is manifest only when the fire-
ball is a large one. Otherwise such re-
ports would be much more frequent. The
reality of the effect is supported by three
of the reports where the perception of a
strange sound clearly preceded visual
identification of the fireball.

The fireball itself exhibited no unusual
features, It is quite normal for a large
fireball to explode, as most of the ob--
servers noted. This occurs when the at-
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crushing strength of the meteoritic malte-
rial (/0), and at this moment the fireball
is normally close to maximum brilliance.

There were no reports of radio inter-
ference, fading, or blackouts at the time
of the fireball. Also, no reports of abnor-
mal signals in telephone or telex circuits
were received, probably because any
disturbances would pass unnoticed at
such an early hour. The lack of inde-
pendent electrical or electronic detection
of electromagnetic radiation from the
fireball is unfortunate but not unusual,
Almost all of the many reports summa-
rized by Romig and Lamar () have a
similar lack.

At a station near Woodville, New
South Wales, 90 km from the fireball
ground track, geomagnetic micro-
pulsation recording equipment failed to
register any signal in the frequency range
0 to 1.5 hertz at the time of the fireball, as
evidenced by records kindly supplied by
Fraser (I1). This negative result is not
too surprising because the theoretical

30 pm Infrared
300 um
3 mm
3cm Microwave
1 GHz 30 cm
o Meteor
radars
30 m
1 MHz 300 m Broadcast
— 3 km
Omega
— 30 km
1 kHz o 300 km
Whistlers
100 Hz —_
10 Hz o
1 Hz Geomagnetic
micro~
puilsations
0.1 Hz
0.01 Hz

L LU O L e bl Gatbon wl thie geo-
magnetic field is in the range 10" o
10~ tesla directly underneath the trail
(I2-15), which is comparable with the
limiting sensitivity of the micropulsation
recording equipment.

Fireball Energetics

A fireball of apparent visual magnitude
—16 traveling at 20 km/sec at an altitude
of 20 km is produced by a meteoroid
mass of approximately 5 metric tons.
This mass value is a best-fit estimate in
rough agreement with the mass/luminosi-
ty relation published by Hughes (/6), al-
though it has more recently been pointed
out by ReVelle (17) that there is a need to
determine a more reliable mass/luminosi-
ty relation for the study of meteors, me-
teorites, and fireballs.

Assuming an effective meteoroid fron-
tal area A equal to 1 square meter and
taking the drag coefficient Cp to be unity,
which is appropriate for a sphere moving

No obeervations reported of any significant
nonthermal radlation from fireballs In this region
of EM spectrum

No reports known of millimetric radiation from
fireballe

Radar tracking of Saginaw fireball,” Glimartin
(1865); no blanketing detected at closest
approach

No radio emliasslon; Hawkins (1858)

No blanketing ever observed during extensive
surveys of meteor actlvity

No anomaliee detectad in frequency spectrum
analysis by SRI of statlon KSFO (580 kHz)
when lireball passed overhead; Lamar &
Romig (1885)-

Spectral reglon for which no svidence
against EM radiation from meteor flre-
balla has been found

No micropulsations recordéd from NSW fireball

at 70 km distance In frequency Interval 2 to
below 0.01 Hz; Fraser (1978)

Fig. 1. Fireball electromagnetic (EM) radiation spectrum. Other abbreviations: SR/, Stanford

Research Institute; NSW, New South Wales.
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altitude where the air density p, s 10!
kilogram per cubic meter, the equation
E' = 1/2 p. CpA v? yields a rate of dep-
osition of energy of 4 X 10'' watts at
maximum.

Of this energy, upwards of 90 percent
is carried away by the intense Mach 60
shock wave, the remainder being dis-
sipated in the wake or lost as radiated en-
ergy. The latter may be estimated quite
simply by treating the fireball as a black-
body with an emitting area of the order
of 10 m?. Although the stagnation tem-
perature at the leading edge will be
25,000 K for such a fireball (/8), the ef-
fective temperature T, based on ex-
citation temperatures found from spec-
troscopic observations of fireballs by
Ceplecha (/9), will be closer to 6000 K.
This gives a radiated power P = c A T*
(where o is the Stefan-Boltzmann con-
stant = 5.67 X 10®* W m™* K™*) of the
order of 10° W, which is less than 1 per-
cent of the total energy deposition
and will be neglected.

If we now conservatively assume that
2 percent of the total energy is dissipated
in wake turbulence, the amount available
to excite oscillations in the ionized
plasma in the trail is of the order of 10
Ww.

In an earlier search for radio noise
from meteors, Hawkins (20) concluded
that meteors show a surprisingly low ef-
ficiency in converting kinetic to radio en-
ergy. The meteors studied by Hawkins
were no brighter than magnitude —1,
whereas the 1978 fireball had a luminosi-
ty 10° times greater. This makes the ab-
sence of radio emission all the more sur-
prising. Certainly a large amount of input
energy is available, so the next problem
is to identify the likely spectral range of
any possible fireball radiation other than
the thermal emission already considered.

Spectrum Constraints

In considering potential regions of the
entire electromagnetic spectrum in
which radiation may act as a carrier of
the energy perceived as anomalous
sounds, the first and most obvious step is
elimination of all radiations on the ul-
traviolet side of the visible spectrum,
since no ionization is produced beyond
the immediate vicinity of the fireball, in-
dicating that atmospheric absorption is
complete. Energy radiated in the visible
and infrared windows of the atmosphere
cannot penetrate buildings and must also
be climinated, because two of the three
people who reported hearing the fireball
before seeing it were indoors at the time.
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This leaves only radio energy. A diagram
of the radio spectrum from the micro-
wave region down to frequencies detect-
able on micropulsation recording equip-
ment is shown in Fig. 1.

Emissions in the centimetric region
may be eliminated by considering an in-
teresting observation of the 1964 Sagi-
naw (Texas) fireball reported by Gilmar-
tin 21). This large fireball, from which a
100-kg meteorite was later recovered
(22), was tracked with very high preci-
sion by a radar installation, which re-
corded the whole of its flight through the
atmosphere. Following the disintegra-
tion of the fireball, the radar tracked
three separate fragments for a further 3
seconds. There was no reported blanket-
ing of the radar echo by noise emitted by
the fireball plasma.

In the high-frequency (HF) and very-
high-frequency (VHF) radio bands, ex-
tensive radar observations of meteor ac-
tivity have failed to detect signals gener-
ated by meteors. In his search for such
emissions, Hawkins (20, 23) obtained
negative results at frequencies of 30, 218,
and 475 megahertz. Following a Cana-
dian meteor survey lasting more than 11
years, in which the 32-MHz radar obser-
vations were recorded on film, McIntosh
(24, 25) reports that no fireball echoes
exhibited any blanketing effect that

“could be attributed to electromagnetic -

radiation produced by the fireball. The
same is true of the 69-MHz radar obser-
vations obtained over several years in
the Southern Hemisphere meteor sur-
veys conducted from New Zealand by
Keay and Ellyett (26).

Lower in the radio spectrum, the AM
broadcast band is the region most thor-
oughly monitored. In one of the reports
of the 1978 New South Wales fireball,
unusual sounds thought at first to be
from a radio continued to be perceived
after the radio was turned off. The same
appears to be true of the 1963 San Fran-
cisco fireball described by Lamar and
Romig (27), who cite three reports of
anomalous sounds from a total of 65 re-
ports. The 1963 fireball passed directly
over radio station KSFO on 560 kilo-
hertz, which was at the time being at-
tentively monitored by a station engineer
who was trying to identify an unrelated
beeping signal later traced to accidental
triggering of a time-marker oscillator.
Spectrum analysis by the Stanford Re-
search Institute of the monitor tape of
the broadcast revealed no trace of a sig-
nal emanating from the fireball. |

Fireballs are known to cause inter-
ruptions to distant broadcasts, as report-
ed for example by Folinsbee and Bay-
rock (28) in their study of the 1963 Peace
1TOCTORER 1980

River fireball. In this case, intense ioni-
zation due to the fireball in the E and D
regions of the jonosphere caused the
deep fade noted in the reception of a dis-
tant radio station, CICA, on 930 kHz. A
report many years ago by McKinley and
Millman (29) of radar noise starting 1
second or so after strong meteor echoes
has often been quoted (4). This was most
likely due to forward scatter of signals
from distant transmitters, again caused
by the intense fireball ionization at high
altitudes.

The only region of the radio spectrum
for which convincing negative evidence
of fireball emissions is not readily avail-
able is the very-low-frequency (VLF) re-
gion. A search of the literature pertaining
to VLF emissions brought to light a pa-
per by Johler and Morganstern G0) de-
scribing the propagation of an electro-
magnetic pulse originating from a nucle-
ar explosion in the lower atmosphere.
The greater part of the radiated radio en-
ergy from a nuclear explosion lies in the
electromagnetic frequency range 5 to 20
kHz.

It is also pertinent to note that emis-
sions of radio noise associated with auro-
ras exhibit a power spectrum that peaks
just above a low-frequency cutoff, which
is usually around 2 to 6 kHz (37), and
that there are countless reports, dating
back to antiquity, of auroral displays
being heard as well as seen (32).

Source Mechanisrﬁ

In paraphrasing their study (¢) of elec-
tromagnetic effects associated with fire-
ball entry, Lamar and Romig (33) note:
**There are two general explanations for
anomalous sounds. The first possibility
is that the fireball emits electromagnetic
radiation which is somehow transduced
into sound waves at the surface of the
ground. The second possibility is that the
passage of the fireball perturbs the
Earth's electric field sufficiently to cause
local electric discharges on the ground
near the observer.”

The latter mechanism was investigated
by Ivanov and Medvedev (34), who ob-
tained theoretical results indicating that
electrostatic effects are produced by po-
larization of the ionized fireball trail, but
the potential gradients produced are not
significantly greater than ambient values.
On the other hand, the generation of
electromagnetic radiation by a meteor
fireball has apparently escaped theoreti-
cal attention, and emission of energy in
the VLF region of the spectrum has not
been ruled out. ;

It is appropriate to remark that the ex-
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tremely high-energy density in the turbu-
lent wake of the fireball should excite all
oscillatory modes possible in the ioniza-
tion present. The scale of the turbulence
will be comparable with the meteoroid
diameter d, which, at an entry velocity v,
will create new eddies at a rate v/d—in
the present case 15,000 sec™!. However,
the collision frequency is too high and
the geomagnetic field too weak to pro-
vide the charge separation necessary for
appreciable electric dipole radiation near
this or any other likely frequency, such
as the ion cyclotron frequency.

Because of the high collision frequen-
cy, 6 X 10" sec™! at an altitude of 20 km,
it is not profitable to seek a generation
mechanism for meteor VLF emissions
by examining the production of auroral
radio noise, because it takes place in re-
gions of the geomagnetic field where the
collision frequency is very much lower
(35). :

As suggested by spectrum considera-
tions already discussed, a parallel might
be sought between electromagnetic
emissions from a meteor fireball and the
radio pulses produced by nuclear ex-
plosions in the atmosphere. For nuclear
radio pulses three primary mechanisms
have been recognized by Price (36), who
comments, **A great deal of work on the
generation of electromagnetic pulse by
nuclear detonations, including the initial
formulation of most of the generation
mechanisms, remains available only in
classified reports.” Of the available un-
classified material, Kompaneets (37) and
Karzas and Latter (38) give a brief treat-
ment outlining two ways in which a nu-
clear fireball interacting with the geo-
magnetic field will generate electromag-
netic radiation. The first is through the
intense current pulse of Compton elec-
trons, and the second is by the expulsion
of the geomagnetic field from the ionized
region surrounding the fireball.

The meteor fireball lacks the radiation
flux to support the first mechanism, but
the hydrodynamic expulsion of the geo-
magnetic field bears examination. The
geomagnetic energy density is given by
U., = B*/2p,, where B is the geomagnet-
ic field and p, is the permeability of free
space; its value is normally 1072 joule per
cubic meter, which is six orders of mag-
nitude lower than the thermal energy
density in the fireball trail. When the ion-
ization recombines, the expelled field
collapses into its original volume, radiat-
ing the excess energy stored when the
field was compressed outward. The ener-
gy release occurs randomly, with spec-
tral components up to the eddy frequen-
cy.

From an approach based on skin depth
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considerations, it can be shown that the
expelled field will penetrate the fireball
plasma in a time no greater than fp =
Hoengrot/2mv,, where no, and r, are
the initial electron density and trail radi-
us, respectively, v, is the collision fre-
quency, and e and m are the charge and
mass of the electron. Taking ro =1 m
and n, = 10** m™3, assuming total ioniza-
tion as an upper limit, we get 1, = 3 X
10~* second, which means that the geo-
magnetic field can be expelled only from
the first few meters at most of the trail of
a magnitude —16 fireball. The power ra-
diated amounts to no more than UnAv,
where A is the cross-sectional area of the
plasma and v the fireball velocity, which
yields a mere 40 W. Hence it is apparent
that the mechanisms operating to pro-
duce VLF radiation from a nuclear fire-

ball are insignificant for a meteor fireball .

unless it is of comparable dimensions.

However, the magnetic field reestab-
lished in the fireball plasma will be con-
trolled by the plasma motions provided
the magnetic Reynolds number R =
polovpo  is  large compared with
unity. Here L, and v, are scale length
and velocity for the plasma motion, and
the conductivity o = ne¥my. is 5 X 10
mho/m in the plasma, where n is the in-
stantaneous electron density. For a rea-
sonable scale of turbulence in the wake,
R, = 5; although this is low, R be-
comes larger as the scale values are in-
creased and is sufficient for the transfer
of the abundant wake energy into mag-
netic field energy for as long as the elec-
trical conductivity remains adequate.
When the conductivity falls, due to re-
combination or electron attachment as
the plasma cools, the twisted and ex-
tended magnetic ‘‘spaghetti’’ relaxes, re-
leasing its strain energy as VLF fluctua-
tions of the geomagnetic field.

The mechanism is in accord with the
observational finding that only very large
fireballs give rise to reports of anomalous
sounds, because they are the only fire-
balls that penetrate the atmosphere to a
low enough altitude to produce a turbu-
lent boundary layer and wake (/7). Fur-
thermore, the magnetic Reynolds num-
ber is quadratically related to the size of
the fireball through its dependence on
both the scale length and velocity of the
wake turbulence,

Anomalous Hearing

In the Handbook of Sensory Physiolo-
gy, Simmons (39) remarks, **Probably no
single topic about hearing has generated
as much speculation and controversy as
has electrical stimulation of the ear and

14

of hearing.”” He then observes that “‘A
certain confusion still exists today about
what happens when an audio frequency
current is applied in or near the ear, be-
cause there is more than one form of
electrical hearing.”” Some of the more
quantitative electrophonic experiments
have been performed by Sommer and
von Gierke (40), who exposed their sub-
jects to both electrode and electrostatic
stimulation over a range of frequencies

from 100 Hz to 100 kHz. From the ex-

posure of their subjects to electrostatic
fields, Sommer and von Gierke obtained
threshold data which indicated that elec-
tric field strengths exceeding 5 x 107
volts per meter are necessary for detec-
tion. Such field strengths are typical of
the electromagnetic pulses from nuclear
explosions rather than the VLF emis-
sions from meteor fireballs.

Sommer and von Gierke noted that
they had great difficulty in eliminating
airborne artifacts when using large elec-
trodes for electrostatic excitation of the
head. They therefore abandoned the use
of large electrodes. This distinction is ir-
relevant when considering anomalous
meteor fireball or auroral sounds pro-
vided the causal agent is an electrostatic
field variation. Indeed, it has often been
suggested that such sounds are produced
in the immediate vicinity of the observer
by energy transmitted as an electromag-
netic wave. '

Turning to magnetic rather than elec-
trical perception, some remarkable sen-
sitivities have been reported for honey
bees and pigeons, where responses to
variations of 10 gammas and less than 70
gammas, respectively, have been de-
scribed by Keeton et al. (1) (1 gam-
ma = 10~* T, or roughly 10~% of the geo-
magnetic field). These results are in dis-
pute (42), but in a review of the subject
Ossenkopp and Barbeito (4.3) stated that
**Magnetic fields have been shown to
have a biological effect on a variety of
life forms ranging from unicellular orga-
nisms to man.' The field levels are gen-
erally of the same order of magnitude as
the geomagnetic field or higher and rapid
variations at VLF have not been deeply
explored. However, at a somewhat
lower frequency, Tucker and Schmitt
44) reported that in more than 30,000 tn-
als on more than 200 persons exposed to
60-Hz alternating magnetic fields of 7.5
to 15 X 10~* T root-mean-square, no real
perception occurred.

In the light of these effects, both elec-
tric and magnetic, an opportunity was
taken to conduct some tests with human
volunteers exposed to electrostatic fields
and magnetic fields, singly or crossed,
varying at frequencies of 1. 2. 4. and 8
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kHz and wideband noise. Purely acous-
tic tests, with a loudspeaker, were also
conducted at the same frequencies. The
magnetic field was generated by a large
Helmholtz coil, which produced a maxi-
mum field of 10~* T, 1.5 times the geo-
magnetic field. The electrostatic field
was generated by a heavy electrode of
effective area 4 X 10~ m? suspended ap-
proximately 0.25 m above the subject.
Direct acoustic radiation was attenuated
more than 20 decibels by surrounding the
electrode with a foam polystyrene enclo-
sure and interposing a large sheet of the
same foam material between the enclo-
sure and the subject. Tests with and
without earplugs indicated that the audi-
tory effects were being produced elec-
trostatically rather than acoustically, and
tests with a sensitive sound-level meter
indicated the presence of only very low
Ievels of acoustic sound.

The results of the tests on 44 subjects
showed that magnetic fluctuations at the
frequencies listed above were not per-
ceived. However, the electrostatic re-
sponses were highly variable from sub-
ject to subject over and beyond the dy-
namic range of the equipment, which, in
terms of power, extended more than
three orders of magnitude. Peak-to-peak
variations as low as 160 V/m (60 V/m
root-mean-square) were perceived in the
eicctrostatic field at frequencies of 4 and
8 kHz by the subjects with sharpest acu-
ity. There was a fairly general, but cer-
tainly not proportional, relationship dis-
cernible between electrostatic and
acoustic thresholds as a function of fre-
quency. The full results of these tests
will be published elsewhere, but the con-
clusions related to this study are that an
electrostatic field of 160 V/m peak-to-peak
amplitude, varying at upper audio fre-
quencies, can be perceived by human
subjects either by an electrophonic
mechanism or by acoustic signals gener-
ated in the close vicinity of the ear by
metal or dielectric objects vibrated by
the field. Furthermore, the sensitivity of
various individuals to electrostatically
produced *‘sounds™ varies by factors of
at least 10" in terms of power, which
helps to explain why only some individ-

uals report hearing anomalous fireball
sounds.

Conclusions

A peak-to-peak variation of 160 ¥/m in
the E vector of an electromagnetic wave
detected at a distance of 40 km from a
fireball requires a total radiated power of
2 x 10"™ W. However, this distance is of
the same order as the wavelength of the
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VLF radiation which is confined to the
earth-ionosphere cavity and which has
the effect of magnifying the effective
power, provided absorption losses are
not high. If the cavity effect and local
conditions together act to concentrate
the effective power in the vicinity of
some observers, it should not be impos-
sible to reconcile this power level with
*he amount of power available in the fire-
ball wake. Also, if the generation of sur-
face acoustic waves in the upper audible
range by the varying electric field acting
on objects close to the observer is as ef-
fective as laboratory trials suggest, it
should be possible to reduce the power
levels by a further factor of at least 10°.

To confirm the existence of VLF emis-
sion from meteor fireballs, it will be de-
sirable to compile and disseminate annu-
al lists of fireballs (¢5). Each occurrence
should be timed as accurately as possible
to ensure positive identification of fire-
ball events on the chart records of VLF
receiving stations engaged on other
work, such as whistler detection. VLF
energy from a meteor fireball should
propagate globally in the earth-iono-
sphere duct and have a distinctive time/
frequency spectrum compared to light-
ning discharges or nuclear bomb detona-
tions in the atmosphere, It seems more
than likely that VLF receiving networks
established for nuclear test moniioring
must have already recorded many mete-
or fireballs, but they may not have been
identified for want of fireball sighting
data.

In 1 year only about 50 fireballs as
large as the New South Wales fireball en-
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ter the earth’s atmospehre, and of these
fewer than three are observed and re-
ported, the remainder being over the sea
or unpopulated areas or behind clouds.
From any given inhabited region such a
fireball event will be seen on average at
intervals of 30 to 100 years, depending
on the cloud cover statistics of the re-
gion.

To sum up, it now appears to be cer-
tain that meteor fireballs are perceived
aurally by a significant number of ob-
servers. The energy transfer appears to
occur at very low frequencies in the up-
per audio range emitted by the fireball as
electromagnetic radiation. Further work
is now indicated to determine more pre-
cisely the mechanisms of electrostatic-
to-acoustic transduction involved and
the conversion of energy into VLF radia-
tion from the energy of turbulence in the
fireball wake.
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[1] Electrophonic meteor sounds, heard simultancously with the meteor appearance, are a
longstanding problem due to their nonintuitive nature. Previous investigations have been
undermined by lack of instrumental recordings. Here we present the first instrumental
detection of clectrophonic sounds obtained during the observation of 1998 Leonids from
Mongolia. Two Leonid fireballs of brightness —6.5" and — 12" produced short, low-
frequency sounds, which were simultancously recorded by microphones in a special setup
and heard by different observers. Simultancous measurements of clectromagnetic ELF/
VLF radiation above 500 Hz did not reveal any signal correlated to the clectrophonic
event. The lack of signal was explained by the low frequency of electrophones. We show
that physical characteristics of Leonid clectrophones cannot be completely explained by
existing theories and that further theoretical refinement and observational work 18 nceded.
Finally, we tentatively suggest the possibility of stronger than expected coupling of
fireballs with atmospheric charge dynamics and ionosphere.  INDEY TERMS: 6245
Planctology: Solar System Objects: Meteors: 2435 lonosphere: lonospheric disturbances; 6929 Radio Science:
lonospheric physics (2409): 2411 Tonosphere: Electric fields (2712); KEYWORDS: meteors, Leonids,
clectrophonic sounds, ELF/VLE, ionosphere disturbances

Table 1. Witness Reports of the Electrophonic Sounds During the 1998 Leonids Collected by the Global
Electrophonic Fireball Survey®

No. Time, UT Sound Duration, s Witness Meteor Magnitude
1 1933:12.1 (16 Nowv.,) pop-like 012+ 0.01 2 —65+05

2 2028:25.2 (16 Nov.) pop-like 0.074 £ 0.004 6 12 = |

3 ~0400:00 (17 Nov.) “whoosh™ =1 1 e 10

4 unknown (16/17 Nov.) crackling 1 -2 1 =—5

g =0700:00 {17 Nov,) sizzling (white noise) =3 1 “light up the whole sky™
6 =0000:00 (17 Nov.) sizzling, “like bacon =3 | 3 -2

frying” -

“From [Finkovic et al. 2000, also see hitp//gefs.ces.uky.edu/] Report 1 and 2 belong to our group. Flectrophonic event 6 is
also descnbed by Dremmon ef al. | 2000].
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Figure 1. Recorded electrophonic sound from M, 6.5"  Figure 2. Recorded clectrophonic sound from M, 120

+ (.5™ fireball: (a) the meteor brightness recorded by video;  + 17 fireball: (a) the electrophonic channel, (b) the open
(b) the “clectrophonic™ channel; (c) the “open” channel.  channel. Amplitude is given in arbitrary units, ime 0.0 s
Amplitude is given in arbitrary units, time 0.0 5 = 19 hours 20 hours 28 min 25.0 s UT (16 November 1998),

33 min 12.0 s UT (16 November [998) Saturation of the

signal in the open channel is due to uncontrolled audio

reactions from observers, but no signal leakage is visible on

the electrophonic channel.
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Progressin Explaining the Mysterious Sounds
Produced by Very Large Meteor Fireballs
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Abstract — Strange sounds, heard simultaneously with the sighting of bril-
liant meteor fireballs many tens of kilometers distant, have been an enigma
for more than two centuries. The term " electrophonic sounds™ is now widely
used to describe them and distinguish them from the normal sonic effects
heard after thefireball has passed by. A physically viable explanation for me-
teor fireball electrophonic sounds has been developed and verified by obser-
vation and experiment. The history of this neglected branch of meteor science
is presented in some detail, drawing attention to the difficulties which stood in
the way of asolution until fairly recently.

Introduction

The entry into the atmosphere of alarge meteor fireball isone of the most awe-
some natural phenomena that a human being can witness without being greatly
endangered. The largest and most spectacular meteor fireballs are very rare
events, and few people ever see oneduring their lifetime. For about ten percent
(Lamar and Romig, 1964) of those who do witness a very luminous meteor
fireball, the mental impression is heightened by strange swishing, hissing and
popping nhoises coincident with its passage across the sky. Such sounds are
quite anomalous in that they imply acoustic propagation at the speed of light.
Thisanomaly wasfirst recognized more than two centuriesago, and has defied
explanation until quite recently. It isthe purpose of this essay to relate the long
history of observation of anomalous sounds from bright meteor fireballs, and
to recount the course of events which led to a viable physical solution of the
mystery.

But first, terminology. For reasons that will emerge, the anomal ous sounds
heard to accompany the flight of a meteor fireball will from here onwards be
called el ectrophonic sounds to differentiate them from the acoustically propa-
gated booms and rumbles which are heard from seconds to minutes after the
light of thefireball has extinguished. Electrophonic sounds should not be con-
fused with the electrophonic effect, otherwise known as electrophonic hear-
ing, which relates to the sensation of hearing arising from the passage of an
electric current of suitable magnitude and frequency through the body (Adri-
an, 1977; Walker, 1988). Also, in the interests of brevity, the word bolide will
be used in lieu of "large, bright meteor fireball”, since that is its accepted
meaning.
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History

The first lucid account of electrophonic sounds related to the flight of a
bolide originated from Chinain 817 A. D. At the same time asit was seen, the
bolide made"anoise likeaflock of cranesinflight" (Astapovich, 1951; LaPaz,
1958). It is very probable that electrophonic sounds were heard in more an-
cient times. Some of the celestial noises mentioned in the writings of early au-
thors such as Hesiod and in the Christian Bible (for example Acts 2:2) may
well have been electrophonic of bolide origin.

Thereis no doubt about the el ectrophonic effects of alarge bolide seen over
England on the 19th of March, 1719. Edmund Halley (1719) reported some
eye-witnesses "hearing it hiss as it went along, as if it had been very near at
hand," but he dismissed such claims as™the effect of purefantasy." Thisrejec-
tion is related to Halley’s realization, by careful triangulation from many ob-
servations, that "they abundantly evince the height thereof to have exceeded
60 English miles", which isfar too distant for sound waves to arrive instantly.
Halley was one of thefirst to show that meteors occur at a great height com-
pared to most other atmospheric phenomena and that their velocity was "in-
credible", being " above 300 such milesin aminute."

During the next half century there were two further accounts of electro-
phonic bolides in the Philosophical Transactions of the Royal Society (Short,
1740 and Pringle, 1759) and another drawing attention to what now would
seem to be electrophonic sounds emitted by an intense auroral display (Der-
ham, 1727).

In the year 1783 a spectacular bolide passed over Scotland, eastern England
and part of Europe (for arecent evaluation of this event and its importance to
meteor astronomy, see Beech, 1989). Many reports of electrophonic sounds
were gathered by the Secretary of the Royal Society, Thomas Blagdon (1784).
Blagdon, a former army surgeon who was quite familiar with the delay be-
tween the flash and the boom of distant artillery, was, like Halley, perplexed by
the simultaneous perception of hissing sounds with the visual appearance of a
bolide more than 50 miles distant. He was so convinced of the veracity of the
witnesses that he did not reject the anomaly and decided that he' would leaveit
asapoint to be cleared up by future observers." Again, following Halley, Blag-
don did adisservice to the subject by suggesting that the sound perception may
be psychological through "an affrighted imagination." These conclusions, by
eminent men, bedeviled studies of electrophonic sounds for two centuries.

It must berealized that the views of Halley and Blagdon were circumscribed
by the limits of existing scientific knowledge: by 1784, Coulomb had not yet
discovered the fundamental law of electrostatics, and afurther century wasto
elapse before Hertz demonstrated the existence of radio waves.

Over the intervening period there were a number of inconclusive reports of
electrophonic sounds from bolides and similar hissing noises from very bright
aurorae. The great Leonid meteor shower of November 13th, 1833, gaverise
to many reports of sounds accompanying some of the largest meteors. Denison
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Olmsted (1834, 1835), Professor of Mathematics and Natural Philosophy at
Yale, gathered many reports and wrote, " The sounds supposed to have been
heard by afew observers, are ... represented either as a hissing noise, like the
rushing of a sky rocket, or as slight explosions like the bursting of the same
bodies. These comparisons occur too uniformly, and in too many instances, to
permit us to suppose that they were either imaginary or derived from extrane-
ous sources."

About ayear after Hertz' experiment, aletter to Nature from Samuel Sexton
(1885) drew attention to the similarity of sizzling, hissing and buzzing sounds
to theaffliction of tinnitus aurium, suggesting this to be the explanation for au-
roral sounds.

Even when electric fields and radio waves became well understood, the so-
lution to the problem of instantaneous sounds from bolides remained elusive.
The only evidence was anecdotal and the incidence of the sounds remained
highly capricious, being sometimes heard by only one or two members of a
group of eye-witnesses in close proximity to each other. This feature of the
electrophonic bolide sounds, together with their simultaneity with a visual
event tens to hundreds of kilometers away, undoubtedly led respected meteor
observers such asW. E Denning (1903) to uphold Halley and Blagdon’s judge-
ment, despite the existence of a number of reports suggesting otherwise, such
as"Whilewalking in my garden my attention was attracted by adistant hissing
sound, and on looking up | saw the meteor' (quoted in Denning, 1903).

Although "W. F. Denning was one of those rare amateur astronomers who
achieved world-wide respect and fame in several areas of astronomy ... heis
probably best remembered today for his work in the field of meteor astrono-
my"* (Beech, 1990). Therefore Denning’s conclusion that **hissing and similar
noises ... may be dismissed as imaginary,” and is an " observational illusion™
(1907) carried considerable weight among meteor scientists. He later likened
auroral sounds with electrophonic sounds from meteors, stating, " They areei-
ther imaginative or due to causes not directly connected with the phenomena
observed" (Denning, 1915).

Such was the climate of opinion when a spectacular bolide lit up the night
sky of almost the entire State of Texas on thefirst of October, 1917. Engineer-
ing Professor J. A. Udden of the University of Texas gathered more than 60 re-
ports of the event with the intention of locating itsimpact point somewhere in
central Texas. He noted that "' Several parties who saw the bright body at adis-
tance of about 200 miles (320 km) or less, report hearing a swishing or buzzing
sound, which seems to have been simultaneous with the appearance of the
light." After analyzing nine reports of these sounds, he concluded (1917a), "'If
these observations are not subjective, the cause of the sound may perhaps be
sought in either waves that, on meeting the earth, or objects attached to the
earth, such as plants or artificial structures, are in part dissipated by being
transformed into waves of sound in the air." His very apt conclusion was evi-
dently prompted by one of the observers who* seems to refer this sound to ob-
jects attached to the ground” (Udden, 1917b).
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Udden's perceptive hypothesis was not readily tested because of the rarity
of electrophonic bolides at any given location. Every few years areport of an
electrophonic bolide would appear in a scientific journal and, without first-
hand experience of the event, all ameteor scientist could do wasto gather and
collate such reports. One such was Udden's fellow American, C. C. Wylie,
Professor of Mathematics and Astronomy at the University of lowa, who
wrote an article " Sounds from Meteors™ in Popular Astronomy (1932). In it,
Wylie asserted "' The explanation is without doubt psychological.”

Infollowing Denning rather than Udden, Wylie was undoubtedly influenced
by hisearlier investigation of the large bolide seen over central Illinois in July
1929. He concluded his summary of that event (Wylie, 1929) with the para-
graph "Many letters report a swishing or hissing sound. Some report other
noises; but we often have from the same community a definite report that no
sound was audible to some one sitting on a porch where everything was quiet.
Further, thereis no mention of an appreciableinterval of time between the ap-
pearance of the meteor and the hearing of the sound. In all cases the interval
should have been minutes. Hence, none of these sounds can be accepted as
from the meteor.”

Later, Wylie (1939) embellished his case by lumping electrophonic bolides
with other, better founded, examples of psychological errors affecting meteor
reports from the general public. He also claimed that persons knowing that a
meteor must be fifty or more miles away never report hearing such sounds.

The negative opinions of acknowledged meteor experts such as Denning
and Wylie led many meteor scientists to shun the subject of electrophonic
bolides. Among the exceptions was H. H. Nininger (1939), one of the first
prominent meteor scientists to begin “to regard the matter as a problem in
physics rather than psychology™ and to " finally become convinced of thereal-
ity of such sound where the environment of the observer is favorable."
Nininger based his view on the" Many cases (that) are on record wherethein-
formantsinsist that the sound attracted them from behind or within buildings,
and, in some instances of daylight meteors, the sound was commented upon
before any light was seen or known about.”

Nininger had earlier (1934) proposed " that there may be, in connection with
meteors, ethereal as well as aerial propagation of sound." In hislater paper he
revealed, "In 1934, Mr. EImer R. Weaver of the U. S. Bureau of Standards sug-
gested to me in conversation that possibly ether waves are transformed into
sound waves upon striking objects in the environment of the observer."
Nininger went on to report that it is a matter of common knowledge among
radio engineers that many different kinds of object, in the vicinity of powerful
radio transmitters, serve as receivers, ' sometimes giving out very good repro-
ductions of programs which were being broadcast.” In these instances the
radio signals were being rectified by the objects in order to demodulate and
produce the audible sounds. Similar speculations involving microwave and
millimeter-wave energy were presented by Anyzeski (1946).
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Weaver's hypothesis came tantalizingly closeto success: it was not accepted
for want of evidence of radio signalsfrom even thelargest bolides. Nor had he
been explicit about his suggested transformation process, so the subject re-
mained open to speculation.

Returning now to the problem of nomenclature, Nininger (1939) proposed
"that 'ethereal' be used as a designation for sound produced by the natural
transformation of ether waves into audible sound™ suggesting that he, too,
must have been closeto realizing how such sounds may be heard. Soon after, in
1940, Professor Peter Dravert, of Omsk University, introduced the term ‘elec-
trophonic fireball' (Bronshten, private communication) and this quite rapidly
became the accepted practice in describing such events.

Barringer and Hart (1949), in discussing the mechanism of soundsfrom me-
teors, were unimpressed by psychological arguments. After summarizing the
"mass of data'’ available, they concluded that "a meteor's audible accompani-
ment can scarcely be dismissed as a product of the imagination of the visual
observers." They presumed that such sounds were carried by radio waves and
estimated that alarge bolide could easily dissipate energy at the rate of several
gigawatts. Of thishighlevel of energy, thethermal radio wave component was
far too weak leading them to consider that the light of the bolide might be
modulated at audiofrequencies. This, of course, led to severe problems of gen-
eration and detection mechanisms quite unknown to science. They retreated to
suggesting that the ionized wake of the bolide" may reasonably be expected to
give off radiation of the intragal actic type," probably alluding to the early dis-
coveriesin radio astronomy of hissing signals of extra-terrestrial origin.

Barringer and Hart's suggestion was taken up in a serious way by Hawkins
(1958a, b), who conducted a search for radio emissionsfrom meteors at sever-
al frequencies, namely 475, 218 and 30 MHz and also at 1 Hz using a magne-
tometer. The meteors Hawkins observed had visual magnitudes between -1
and +5. He concluded "Thus it is probably true to state that meteors do not
emit radio noise within the frequency range 1 Hz - 500 MHz above the limits
of sensitivity of these measurements. Meteors therefore show a surprisingly
low efficiency in converting kinetic to radio energy."

In the meantime, the problem of electrophonic bolides was under scrutiny in
the Soviet Union. The most notable work was undertaken by Professor I. S.
Astapovich, who compiled an extensive catalog of electrophonic bolides and
drew several important conclusions from his detailed investigations
(Astapovich, 1958): only bolides brighter than -9 absolute visual magnitude
produce sustained el ectrophonic sounds; the majority of reports noted that the
bolide trgjectories had very small inclinations to the horizontal; and, since al
of the bolideswere observed at mid-latitudes, their low inclinations meant that
they were moving at alarge angle to the earth's magnetic field lines. Other So-
viet scientists noted that the sharp crack or " peal’ sometimes heard is always
associated with the disintegration and detonation of the bolide. They consid-
ered these soundsto beapurely psychological effect, but accepted the physical
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reality of other electrophonic sounds from bolides (see Romig and Lamar,
1963, p. 53). The controversy over the nature of electrophonic sounds was
contested as strongly among Soviet meteor scientists as it was in Western
countries: Academician B. Yu. Levin supporting the psychological explana-
tion, while Astapovich, an ardent defender of the reality of electrophonic
sounds, argued in favour of aphysical explanation (Bronshten, personal com-
munication).

In areview article, the experienced meteoriticist L. LaPaz (1958) observed
that opinion had turned strongly towards accepting with Udden the objective
reality of anomalous meteoritic sounds. He attributed this as a possible result
of the "ever-increasing amount of prompt, first-hand interrogation of numer-
ous witnesses of large fireball falls" and noted that "several attempts have
been madeto give rational explanation of their cause."

Such was the situation when the United States Department of Defense de-
cided that the matter should be examined, not least because it was well known
from the literature on the subject that Soviet scientists were actively investi-
gating naturally occurring el ectrophonic phenomena. A contract was awarded
to the Rand Corporation, which assigned Mary Romig and Donald Lamar to
the work. Their "study was motivated by the possibility that a better under-
standing of these phenomena will lead to new techniques for determining the
size, nature and path of any large body entering the earth's atmosphere™
(Romig and Lamar, 1963).

Romig and Lamar's 65-page unclassified report presented 88 references, a
catalog of 41 anomalous-sound observations with seven detailed maps (their
Appendix A), and afurther catalog of 63 Russian observations (Appendix B).
Their detailed study of the evidence available was, and still is, essential read-
ing for any student of the subject. However they reached no firm conclusion on
the physical mechanism for producing the sounds except to attribute them to
an " electromagnetic disturbance,” and recommended that "'the properties of
the plasma sheath and ionized wake should be the subject of further research."
Romig and Lamar gave no indication of the generation process other than to
state (without a reference) that *"the presence of turbulence can greatly en-
hance normal plasma radiations.” AsRomig and Lamar's report wasinconclu-
sive, many meteor scientists continued to invoke the time-honored psychol og-
ical explanation for electrophonic soundsfrom bolides.

At this point it is worth summarizing the difficulties which faced any inves-
tigator studying el ectrophonic sounds, specifically those from bolides:

1. They arerare. Few people have ever heard them, either from bolides, au-
roraeor lightning. Nor has anyone ever had the good fortune to have had
atape recorder in readiness to record them.

2. They are evidently capricious. Not all witnesses in a group may hear
them.

3. Their propagation isinstantaneous, implying transmission at the veloci-
ty of light, but no electromagnetic disturbance had been known to pro-
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duce sound except for electrostatic brush discharges. Such discharges
do not propagate over distances of up to 300 km.

4. No electromagnetic disturbance of sufficient magnitude had ever been
detected from large bolides or aurorae.

5. The method of conversion of electromagnetic radiation into sound was
quite obscure.

6. No physical mechanism was known for the production of strong electro-
magnetic radiation from bolides or aurorae.

Thisis where mattersstood prior to theinitial resolution of the problem pub-
lished by the author in 1980 (Keay, 1980b).

The Great New South WalesBolide of 1978

On the morning of 1978 April 7, the dark moonless night sky above eastern
New South Wales became as bright as day when alarge bolide arriving from
the southwest passed over the city of Sydney and headed seaward past New-
castle (Keay, 1980a). Despite the early hour, ninety minutes before sunrise,
hundreds of witnesses deluged the news media with telephoned sightings. The
bolide reached a maximum brightness of at least -15 mag (absolute) and many
observers were temporarily blinded by it.

As usual with such a bright bolide event, there were a number of reports of
strange sounds heard while the bolidewasin view. At first | rather fashionably
dismissed these as a psychological effect, until persuaded otherwise by some
clear examples of sounds being noted prior to any visual acquisition of the
bolide or itslight.

At Rose Bay, Sydney, 20 km from the ground track of the bolide, S. Mc-
Grath "Heard a bang before seeing the light. It was like a person in the next
apartment slamming a door like a screen door: rather rattley but not loud."
This witness had time to get to awindow and watch the bolide recede and dis-
appear.

At Edgecliff, Sydney, 20 km from the ground track, A. Hayes "Heard a
noise like an express train or bus travelling at high speed. Next an electrical
crackling sound, then our backyard was aslight as day."

At Vaes Point, 40 km from the ground track, J. Ireland *"Heard asound like
an approaching vehicle and saw aflash of light (from behind hisright shoulder)
as everything was lit up like daylight."

At Kotara, Newcastle, 40 km from the ground track, N. Jones heard a noise
likea" phut" when the bolideflared, but "It was not loud enough to wake any-
one." However a friend standing by the door on the other side of their car

heard nothing.
Other impressions of the sound simultaneous with the sighting were "aloud
swishing noise"; ""a humming sound like atransformer or distant siren™; "'like

steam hissing out of a railway engine for a count of about ten"; "a swishing
sound like the onset of an unexpected high wind"; and "a low moaning,
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whooshing transcribable on ataperecorder." It ismost unfortunate that atape-
recorder was not immediately availableto the latter witness.

Publicity surrounding the 1978 bolide elicited recollections from witnesses
of earlier bolides, who provided descriptions of simultaneous sounds quite
similar to the above examples. It became clear to me that the psychological ex-
planation was not realistic and a physical explanation had to be sought.

The Search for an Explanationof Electrophonic Sounds

Clearly, the transmission of energy from a bolide to the vicinity of an ob-
server of electrophonic sounds must be by electromagnetic means. High elec-
trostatic fields causing audible brush discharges may not be ruled out, but it is
difficult for these alone to explain electrophonic sounds heard well over 100
km from the ground track of abolide travelling at an altitude of only 30 or 40
km. Electrostatic fields produced by meteoroids entering the atmosphere ver-
tically have been studied by Ivanov and Medvedev (1965) who showed that the
induced potentials over distances of the order of the scal e height may be sever-
a hundred voltsfor large meteoroids, hardly enough to cause el ectrophonic ef-
fects.

Sustained electrophonic sounds accompany bolides in trajectories having
very small inclinations (Romig and Lamar, 1963) rather than very steep or ver-
tical paths. In the latter case, sounds of an electrophonic nature are generally
of very brief duration.

The work of Hawkins, already referred to, was widely considered to rule out
the generation of electromagnetic radiation by meteors, at least at the frequen-
cies examined. However it seemed to meentirely plausiblethat very large me-
teors which penetrate low into the atmosphere — bolides — could excite plas-
ma oscillations not possible with the smaller bodies at higher altitude which
were observed by Hawkins.

A literature search disclosed instances where bolides produced no electro-
magnetic radiation at frequencies in the broadcast band and above, up to at
least the microwave region of the spectrum (Keay, 1980b). On the other hand,
the acoustic effects suggest that the el ectromagnetic energy may lie within the
audible range from 100 to 10,000 Hz, in which case no rectification is needed
to detect the signals: simple transduction suffices. There exists no observa-
tional evidence ruling out em radiation at frequencies in the ELF/VLF range,
so energy transfer in thisregion of the spectrum was accepted as aworking hy-
pothesis, with transduction to acoustic energy taking place close to or within
the hearing organs of some observers (Keay, 1979). The response to this idea
was mixed: a prominent meteor scientist dismissed it with the words, "Or is
this a more fruitful field for psychologists rather than physicists?* (anon.,
1979).

At this point, it should be noted that Romig and Lamar (1963) did suggest
"that the sound is electrically transmitted and transduced near the observer."
Equality of frequency was not implied because they elsewhere employed the
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word transduction for examples where the em frequency did not lie in the
audio frequency range. In alater paper, Romig and Lamar (1964) mentioned
the possibility that " perhaps the electromagnetic waves act directly on the
brain.” But Lamar and Romig (1964) claimed (without references) that " There
are also many individuals who report that the sounds seemed to have originat-
ed from surrounding objects rather than the fireball." Ingalls (1967) quotes a
Cornell Radiophysicist, Dr. B. W. Hapke, who, with his wife, witnessed an
electrophonic bolide. He stated, " The hissing and crackling noises were defi-
nitely associated with the meteor, although we cannot be sure whether or not
they appeared to be coming from the meteor or from all around us."

Evidence for direct transduction of ELF/VLF em radiation into sound has
been available from at least two sources. Lightning strokes emit em energy
over a very broad spectrum and for many years instances of “vits,” "clicks"
(McAdie, 1928) "tearing noises”" and " swishes" (Cave, 1926) preceding thun-
der have been reported. The latter are probably due to arapid increase in the
geoelectric field just prior to the discharge (Schonland, 1964), but the sharp
sounds are usually coincident with the flash. Similar clicks are said to be heard
at the instant of atmospheric nuclear weapon detonations from which the
strong em pulse is well studied and known to peak at around 12 kHz (Johler
and Morganstern, 1965).

The Electromagnetic Energy Gener ation Process

A large bolide shedsits kinetic energy at rates upwards of tens of gigawatts.
Itsluminousefficiency, afunction of velocity and composition, is of the order
of afew percent. lonization is of the same order, while the remaining energy is
mainly liberated as heat. The extremely high energy density residing in the
plasma trail should excite all oscillatory modes possible, including those at
frequenciesin the audio range (ELF/VLF radiation). The problem is to discov-
er aredlistic generation mechanism. One possibility appeared to be through
excitation of ahybrid-mode magnetohydrodynamic wave within the plasma of
the bolide trail. For atypical ion density of 10% m™ at an altitude of 30 km, the
plasma frequency is of the order of 10" Hz, in the microwave region of the
spectrum. lon cyclotron oscillations in the Earth's magnetic field have a very
low frequency, about 100 Hz, but they are prevented by the high collision fre-
quency of at least 10® Hz.

Turning to the possibility of bulk oscillationsin thetrail plasma generating
Alfven waves, the collision frequency at the above altitude in afully ionized
plasmaat a temperature of 5500° K isfound to be 1.5 x 10'? s”!. Thisyields a
conductivity

2
0= -75x10°Gm™" (1)
m,v,

Assuming an effective oscillating column length across the trail of 200 m,
and taking, from the chosen altitude of 30 km, atypical valuefor thetrail den-
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sity of 2x 102 kg m™*, the Lundquist number, which determines the likelihood
of magnetohydrodynamic wave generation (Alfven and Falthammar, 1963), is

Lu=BLS [Fo _¢ s )
2n° \p,

Thisisquiteinsufficient, asit needsto be much greater than unity.

In the search for other possible generation mechanisms the production of
the pulse of electromagnetic radiation from a nuclear explosion was investi-
gated. Of the principal mechanismsdiscussed by Price (1974), thoseinvolving
X- and gamma-radiation may be ruled out for bolides. But the third mecha-
nism, involving the expulsion of the geomagnetic field from the ionized re-
gion surrounding the bolide, bears examination.

The ratio of thermal to magnetic energy per unit volume in the plasma
sheath of the bolide is given by

%S"—RZ ~13x10° 3)

B°M
where the molecular weight M is taken as the standard value of 29 and the
strength of the geomagnetic field B is taken as 0.3 gamma (3 X 10°G). This
indicates that the energy density in the sheath is 8 orders of magnitude greater
than the geomagnetic field energy density and therefore the geomagneticfield
iseasily pushed aside by the bolide.

The geomagnetic field expelled from the plasma sheath surrounding a
bolide leaks back into the trail plasma at a rate which may be estimated from
skin depth considerations. It can be shown that the expelled field will pene-
trate the bolidetrail plasmain atime no greater than

2
1, =ﬂa;&=5x10‘3s (4)

where r,istheinitial trail radiuswhichistaken as 1 meter for amagnitude -16
bolide and total ionization is assumed as an upper limit. This result indicates
that the geomagnetic field can be expelled only from thefirst few tens of me-
ters of the bolide trail. The power radiated amounts to no more than u,Av,
where A is the cross-sectional area of the plasma and v is the bolide velocity.
Thisyieldslessthan 100 wattsfor abolide of magnitude -16, aconsequence of
the trail expansion expending most of itsenergy doing work against the ambi-
ent air pressure rather than against the geomagnetic field. Clearly, the mecha-
nisms which operate to produce VLF radiation from a nuclear fireball are
unimportant for ameteor fireball unlessit is of comparable size and energy.
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Asindicated, theinitial expulsion of the geomagnetic field is very tempo-
rary and thefield leaks back into the plasma only a short distance behind the
bolide body during the brief interval beforethe onset of wake turbulence. The
re-established field isthen controlled by plasma motion provided the magnetic
Reynolds number Re, iswell above unity.

Assuming theinitial scalesizeof theturbulenceZ,, isof the order of thesize
of the bolide itself, around 1 meter in diameter, the velocity of the turbulent
motion v, isone tenth of the velocity of the bolide, and the conductivity has
the value given above, the magnetic Reynolds number is

R,=H,L,v,=20 (5)

This value is adequate for the transfer of the abundant turbulent wake ener-
gy into magnetic field energy for aslong as the electrical conductivity remains
high.

The turbulent motions in the wake have characteristic frequencies upwards
of v,/2nL,, around 500 Hz, as energy is transferred to smaller eddies. The tur-
bulence excites vibrations of the geomagnetic field giving rise to the emission
of electromagnetic radiation in the ELF/VLF region of the spectrum. A major
release of stored magnetic energy occurs when the conductivity falls, dueto
recombination or electron attachment as the plasma cools and the magnetic
Reynolds number falls to less than unity. The twisted and tangled " magnetic
spaghetti** then relaxes, releasing its strain energy as vibrations of the geomag-
netic field within the earth-ionosphere cavity. These field vibrations have
wavelengthsof theorder of 100 km, corresponding to an electromagnetic wave
frequency of 3 kHz.

The above mechanism for the generation of electromagnetic radiation from
large bolides is in accord with the observational finding that only very large
bolides give rise to reports of electrophonic sounds. Astopovich (1958)
claimed that only those bolides having an absolute visual magnitude brighter
than -9 produce sustained electrophonic sounds. This empirical criterion has
since been upheld by model calculations (Keay, 1992a) based on the need for
the bolide to penetrate the atmosphere deeply enough to produce a turbulent
wake (see, for example, ReVelle, 1979) in order for geomagnetic field trap-
ping and scrambling to occur.

Soon after the development of the above bolide radiation mechanism by the
author (Keay, 1980b) it was confirmed by Bronshten (1983a and b), who
showed that a typical electrophonic bolide of magnitude -13 could generate
well over amegawatt of radio power in the ELFIVLF region of the spectrum.

Electrophonic sounds have been reported from bolides fainter than magni-
tude -9. The sounds are usually of brief duration coincident with flaring or an
explosion. Under these circumstances the expansion of the plasma fireball,
still travelling forward at high velocity, would create the turbulent conditions
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necessary for the generation of radio waves. Japanese observers (Watanabe,
Okadaand Suzuki, 1988) have succeeded in photographing alarge Perseid me-
teor (a borderline bolide) which exploded and produced an electrophonic
"phut" sound, while simultaneously from two other locations radio records
were obtained (see Keay, 1992c). This was a remarkable feat given the rarity
and random incidence of electrophonic bolides which makesit very difficult to
record their radio emissions.

Turning now to other electrical and el ectromagnetic phenomena associated
with meteor flight, Bronshten (1991) has conducted an exhaustive investiga-
tion of such effects, concluding that the problem isfar from a solution. Many
attempts have been made to investigate electric fields and currents in meteors
and their trails without conclusive results. Claims that meteors can produce
transient pulses in the geoelectric field (Hopwood, 1989) have not been inde-
pendently verified.

The Electrophonic Sound Transduction Process

It iscommon knowledge that high el ectrostatic fields make dry hair stand on
end. Human el ectrophonic hearing (the direct perception of electrostatic fields
varying at audio frequencies) has been reported (Sommer and von Gierke,
1964) but the field strengths required are large: several kilovolts per meter.
Tests undertaken in an anechoic chamber with 44 volunteers to check their re-
sponse at frequencies of 1, 2, 4 and 8 kHz showed quite wide variability be-
tween subjects (Keay, 1980c). The findings of Sommer and von Gierke were
confirmed for the least sensitive subjects. At the higher frequencies, 4 and 8
kHz, the greatest sensitivity was shown by three subjects (2 female) whose
common characteristic was very loose or "frizzy" head hair. Their threshold
peak-to-peak electric field strength was 160 V/m. Another subject (male) was
found to be 3to 4 db more sensitive at 2 and 4 kHz when wearing glasses.

These findings point towards external transduction near to the ears as being
more effective than internal electrophonic hearing processes. Thisisborne out
by Sommer and von Gierke’s observation that it proved extremely difficult to
eliminate direct acoustic radiation from the electrodes employed. This was
also truein the abovetests, which required acoustic insulation to suppress elec-
trode sounds. Later it became clear that such electrically excited sounds were
really those being sought! Interestingly, Ingalls (1967) alludes to the same
problem in his similar tests, which "failed to produce effects which which
could be attributed to other than normal aural pathsfrom 20to 20,000 Hz."

In the same anechoic chamber, tests were al so conducted to check the ability
of the volunteers to hear magnetic fields varying at audio frequencies. Up to
peak magnetic fields approaching 0.1 mT (the maximum attainable with the
equipment available) there was no significant response from any of the sub-
jects.

Later, in another anechoic chamber, tests were conducted to test a number of
mundane objects, including vegetation, for their ability to act as transducers
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(Keay and Ostwald, 1991). Under electric fields of 400 kV m™ peak-to-peak
varying at 0.5, 1, 2 and 4 kHz, samples including aluminium cooking foil and
typing paper produced sound levelsin the 40 to 60 dB (SPL ref. 20 micronew-
ton m) range, while sprigs of casuarina pine and coastal myrtle produced
from 10 to 25 dB (SPL). These represent minimal responses because the sam-
ples were not shaped or mounted in any special way to enhancetheir transduc-
tion ability. Of course, larger or more extensive amounts of the sample materi-
als could be expected to produce similar sound levels at lower levels of
electrical excitation. Furthermore, objects having resonant frequencies of vi-
bration in the audio range would exhibit an enhanced response and color the
sounds emitted.

Fromtheabovetestsit isclear that for mundane objects, which may beclose
to observers of electrophonic fireballs, their transduction efficiencies may
vary by ratios of more than 70 dB (power) accounting to some extent for the
seemingly capricious incidence of reports of electrophonic sounds. This is
borne out by the loudness range of witness reports, which span acoustic power
levels (assuming the transduction occurs close to the observer) from aslow as
20dB (10" watt), ""barely audible hissing”or "like a very faint sighing,” to at
least 80 or even 90 dB (10~ watt). For example, from quite different locations,
three independent witnesses of the 1986 fireball over the south-west region of
Western Australia reported "a violent explosion," "very loud sounds” and "a
roar" during the passage and about 90 seconds later all heard the sonic boom
effects. A collection of over 100 electrophonic sound observations indicates
that reports of faint sounds are far more common than loud sounds, suggesting
that ambient noise levels mask el ectrophonic soundsin many instances.

Possibly Related Phenomena

Apart from the instantaneous sound occasionally heard to accompany a
lightning stroke, as mentioned earlier, the phenomenon most obviously related
to electrophonic sounds from bolides is the existence of many claims of
soundsfrom very bright aurorae. Although their existenceis hotly disputed by
many auroral scientists, accounts of such sounds date back at least one thou-
sand years (Dall’Olmo, 1980). The whole subject of auroral sounds has been
exhaustively investigated by Silverman and Tuan (1973) who conclude "that
the observational evidence supports the reality of auroral sounds and that the
most likely source of these seems to be brush discharges, and that these are
generated by aurorally associated electric fields." This was also the conclu-
sion of alife-long student of such sounds, the late Professor C.A. Chant of
Toronto (Keay, 1990). Very large electric fields of the order of 10 kV per meter
from intense aurorae have been measured (Olson, 1971) but the equipment he
used may well have been unable to rule out a large audio-frequency compo-
nent of thefield. Sixty years ago, Burton and Boardman (1933) reported bursts
of VLF emission accompanying flashes of auroral light and there have been
many similar observations since then proving that the polar regions of the
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Earth are at times a very strong radio source with power levelsin the gigawatt
region (Gurnett, 1974). Four possible generation mechanisms have been pro-
posed (Gurnett, 1978) and the subject isfar from resolved.

An intriguing phenomenon, which may also result in the direct transduction
of ELF/VLF electromagnetic energy into sound, is the correlation often re-
ported between strong radio emissions and subsequent earthquakes (Corliss,
1983). A number of reports mentioning a "rushing" sound preceding earth-
quake shocks were gathered by Milne (1841). More recent accounts of such
sounds may be lacking because of greater incidence of similar man-made arti-
factsreducing public alertness to sounds of seismic origin. However, audiofre-
guency electromagnetic disturbances associated with earthquakes have been
discussed in thisjournal (Parrot, 1990), while laboratory studies mentioned by
Johnston (1987), and others, show that rock fractures generate el ectromagnet-
ic signals. Cress and his coworkers (1987) recorded signals peaking in the
range from 900 Hz to 5 kHz. Field studies conducted by O’Keefe and Thiel
(1991) during large rock-blasting operations revealed a series of electrical
pulses with arepetition frequency as high as5 kHz and an amplitude of several
volts. The substantially greater energy release in an earthquake could be ex-
pected to generate signals many orders of magnitude higher in amplitude. The
connection has yet to be confirmed between these experimental observations
and the alarm frequently exhibited by animals immediately prior to an earth-
quake and, of course, the sparse reports of earthquake sounds by human ob-
servers.

Lastly, a phenomenon which is ailmost certainly identical to the subject of
this essay, was first reported when NASA space shuttles began landing in
Florida (Keay, 1985). J. Oberg and D. Potter of the Johnson Space Center
began receiving reports of people hearing a " swishing'" sound as the shuttles
re-entered the atmosphere over northern Texas and Oklahoma. Several at-
tempts to record the sounds and the radio signals were thwarted by mission
changes and the Challenger disaster. This quest has not yet succeeded, though
the relative predictability of space shuttle re-entries makes the deployment of
recording equipment more likely to be rewarded than for random bolide
events. The destructive re-entry of large rocket stages also may produce elec-
trophonic sounds: such areport was forthcoming from one of the witnesses (D.
Deane of Townsville, QLD) to such an event over north Queensland on the
early morning of 31 July 1992, when the Cosmos 2204 rocket reentered the at-
mosphere.

Conclusions

Physically acceptable explanations have now been found for each stage of
the transfer of energy at luminal speed from a bolide to the ears of a witness.
The explanations are, as yet, far from exhaustive, and thereis ample scope for
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further investigations. In particular, there is need for a comprehensive treat-
ment of the " magnetic spaghetti’* radio generation mechanism taking turbulent
plasma processes fully into account, and a need for thorough analysis of the
acoustic response of mundane physical objectstoimpressed electrical stress.

The collection of high-quality observational data is an important priority.
The difficulties of capturing records of bolide events are quite formidable
given their rarity. Also important for correlation with synoptic ELF/VLF
records are catalogs of electrophonic observationsfor which the times should
be as accurate as possible. This has long been recognized by Russian meteor
scientists who have now published five catalogs containing over 600 observa-
tions of electrophonic bolides (Bronshten, 1991). The only such catalog of
Western origin is contained in Romig and Lamar's (1963) comprehensive
study, although a new catalog containing more than one hundred entries has
been assembled and is shortly to be published by the author in the WGN Re-
port series of the International Meteor organization (Heerbaan 74, B-2530
Boechout, Belgium).

A limited search, with negative results, was conducted by Wang, Tuan and
Silverman (1984) using data collected from a VLF monitoring station at
Thule, Greenland. Thedistances from the bolide eventswerelarge and the fre-
quencies examined were probably too high. Thereis a pressing need for better
radio observations of bolides known to have been associated with confirmed
reports of electrophonic sounds.

Lastly, it isessential for geo-scientiststo take reports of audible phenomena
more seriously in order that some progress can be made in identifying the
physical mechanisms involved. The subject of electrophonic sounds from
bolides is now considered respectable within the meteor science community
(Keay, 1992b), and a similar shift in acceptance is now overdue within the
communities of auroral and seismic scientists.
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