MSSonline 2023/Mar./30 日本流星研究会 小関正広

要旨

先に SonotaCo ネットのデータにより作成した「流星群データ集」の改訂増補を Global Meteor Network (GMN) のデータを用いて行った。使用した GMN(Global Meteor Network)の流星数は760874個であり、前回の2007~2018 年の SonotaCo ネットの流星数 284273 個より大幅に増加したこと及び南天の観測が含まれるようになったことから検出された流星群数は 82 個から 118 個に増加した。まとめのデータは表 I-7 に示した通りである。

はじめに

3年ほど前に SonotaCo ネットのデータを使用して「流星群データ集」を MSS で発表した。その後、GMN の活動が南半球も含めて活発に行われるようになり、現在では百万件を超えるデータが蓄積されるようになった。今回は GMN の 2023 年 2 月までのデータ(2023-02-25 00:35:46.416729 UTC)を用いて先に発表した「流星 群データ集」の改訂増補を試みることとした。GMN は観測数が急激に増加している途中であり、SonotaCo ネットに比べて年ごとの観測数に大きな偏りがあるという特性を持っている。

本稿は3部構成で、I. 調査方法及び調査結果の概要、II. 注意が必要な流星群、III. 輻射点分布図と活動曲線からなる。I.では極大における輻射点と地心速度及び軌道要素を表 I-7 に示した。II.では IAUMDCSD で混乱のあるものを中心に I.と III.だけでは誤解を生む可能性のある流星群について説明した。III.では SonotaCo ネットと GMN での「流星群の定義」の違いについても触れる。

I. 調査方法及び調査結果の概要

1. 調査方法

IAUMDCSD(March 29, 20:00:00 UTC, 2023 改定版)に掲載されているもの全てについて 10 段階に格付けした ものを eMeteoorNews に発表したが、そのうちで評価が 8 以上のものについて取り上げる。基本的には DR の 平均が 5 以上かつ、極大における 1 日当たりの流星数が 10 以上のものである。また、7 以下のものでも興味 深い活動についてはその一部について検討した。

調査項目は前回と同様であるが、オリオン群を例として調査手順を説明する。

1. 1. IAUMDCSD のリストの中で代表的と思われるデータを選択する。

オリオン群のように記載されているデータがよく一致している場合には最初の報告を使用する。 0008ORI00: λs=208.7, λ-λs=246.56, β=-7.45

1.2. 輻射点の位置(λ-λs, β)が太陽黄経により変化しないとして仮の輻射点分布、活動グラフを作成する。 図 I-1(a)と図 I-2(a)に元データをそのまま用いた輻射点分布と活動グラフを示す。輻射点分布を(α, δ)座標上 で表すと、輻射点の移動量が大きくなり、天球の球面座標を平面上の直線近似に無理が生じる。(λ-λs, β)座標

図 I-1: 左側は元データそのまま(a)、右側は輻射点移動を考慮したもの(b)。

図 I-2: 左側は輻射点が黄道座標で固定されているとするもの(a)、右側は輻射点移動を考慮したもの(b)。 を用いることにより、移動量が小さく、無理のない程度の直線近似が可能となる。なお、輻射点分布は初期値 として*Δλs*=10 すなわち*λs*=198.7~218.7 のデータによるものである。

<u>1.3.活動グラフから活動期間を推定して、太陽黄経による輻射点の位置(*λ-λs*, *β*)と地心速度の変化を回帰 分析によって求める。</u>

活動グラフから初期値として使用したAls=10 が妥当と考えられるので、この範囲の観測について回帰分析 を行う。その際に中心から3度以内に存在し、地心速度の回帰直線から±3(km/s)のデータを使用する。

図 I-3:輻射点のx座標の太陽黄経による変化。左は元データ(a)、右は回帰分析が収束した状態(b)。 数回の操作により、回帰直線は収束して一定の値になる(図 I-3b)。回帰直線の上下は中心から3度以内の輻 射点を分析に採用しているため、切り取られている。

1. 4. 求めた輻射点移動をもとに、輻射点分布図と活動曲線を作成する。

回帰直線によって行われた輻射点移動の推定値を用いて輻射点分布と活動曲線を再計算したものがそれぞ れ図 I-1b と図 I-2b である。

輻射点分布はほぼ円形になり、いわゆる「オリオン群の尻尾」が明確に示されている。また、図 4a に見る ように 3.0 度以内にオリオン群の輻射点の 80%、5.6 度まで含めると 90%が含まれることが分かる。本調査で 中心から 3 度以内の輻射点を流星群に帰属するとみなしていることの妥当性が示される。

れぞれの距離までの輻射点数の割合。

離とするとき、 a と bは、それぞれ、中心における輻射点の密度と輻射点の広がり方の指標となりうる。 図 I-2a と b の活動曲線は一見すると違いに気づかないが、調査期間 *l*s=198.7~218.7 の外側についても活動を 追跡できて *DR* や *Nr*<=3 の数値が上昇していることが分かる。ここで図 I-2b の活動曲線のいずれが出現状況 を最も適切に表すものとして選ぶかを考える必要がある。2 つの条件を考慮する必要があり、一つは流星数そ のままだと観測条件(天候等)の影響を受け、もう一つは、*DR*を観測条件の影響を緩和するために用いたと しても近隣の流星群の活動の影響を受けるということである。

太陽黄経で1度の幅で0.1度ごとの移動平均によって表した流星数そのままによる活動曲線を図I-5aに示す。図I-2に比べて移動平均の幅が狭くなったので極大付近の変化が詳しくわかる。ここで図I-2のNr<=3(オリオン群の流星数)が2つの極大を示している問題の原因が分かる。図I-5aを見ると、GMNの観測で平均値を支配しているのが2022年の観測であることが分かる。GMNの観測数は指数関数的に増加しているので、これは当然なのだが、本稿の内容も2022年の観測(2023年の観測がある場合は2023年)に支配的な影響を受けていることに注意が必要である。図I-5aで2022年の観測でオリオン群は2つの極大を示しているが、図I-5bのDR15では単一の極大となっている。これはGMNの中心である欧米の観測が何らかの理由(恐らくは天 (い) [N] 00080R100 (とって妨害されたであろうことを示唆してお

り、2つの極大は見せかけであったことが分かる。 このように流星数それ自体を不注意に使うと間違

った結論を導いてしまうので、DRによる補正を併用 する必要がある。しかし、先に述べたようにDRは周 囲の流星活動の影響を受ける。図 I-6 は輻射点移動を 考慮した中心からの距離による 0.1 度幅の円環内に 存在する輻射点数の変化を示している。オリオン群 の輻射点は中心から離れるに従って減少するが、6 度 付近からは再び増加に転じる。これは 0.1 度幅の円環 の面積が増加することによる自然増である。なお、15 度付近の微増は EGE、45 度以降の増加は STA 及び NTA によるものである。オリオン群の活動は非常に 活発で EGE の影響をあまり受けないが、小流星群の

活動曲線を得るには十分考慮すべき点である。オリオン群の場合、DR3_6 が不適であることは図 I-2b から見 ても明らかであり、EGE の影響を避ける意味では DR3_10 が妥当であろうということになる。なお、蛇足だ が、DR の計算に使用する円環の面積は中心からの距離が増すに従って増加し、従って、輻射点数も増加する。 周辺の流星活動が穏やかな場合には、流星数の多い方が DR のばらつきは小さくなる。このような場合には DR3 20 がもっとも妥当だということになる。

Nr<=3 または DR のいずれを取るにせよ、流星群の活動は毎年一定ではありえず、また、観測条件も異なる ため、得られた活動曲線は滑らかなものではない。平均的な活動曲線を推定するために流星群の構造について 単純化したモデルを用いる。

A:近日点方向と軌道の大きさを一定とみなし、流星群の軌道面が近日点の方向を軸に回転するとともに離 心率が変化することにより、異なる太陽黄経でも流星群の活動が見られる。

Rotation:軌道の大きさ及び形(離心率)は一定とみなし、流星群の軌道面が黄道面に沿って回転する(近 日点の黄緯が一定)ことで、異なる太陽黄経でも流星群の活動が見られる。 この2つのモデルに対して流星群の帰属判定にしばしば用いられる D 基準を応用する。Southworth-Hawkins のもので D 判定は次の形で表されている。

D=(軌道の形状の違い)^2+(軌道の大きさの違い)^2+(近日点方向の違い)^2+(相互の軌道面の交差角)^2

A では第2項と第3項を一定とみなすので第1項 と第4項を用い、Rotation については第1項と第2項 を一定とみなすので第3項と第4項を用いる。D 判 定では各項の係数が1となっているが、ここでは使 用する項にそれぞれ係数C1とC2をつける。また、 D では各項の冪が2で固定されているが、2つの項 の和全体に冪C3をつける。オリオン群では係数や冪 を調整することによって、A でも Rotation でもほぼ 同じ活動曲線が得られる(図I-7)。オリオン群の場合

図 I-7:オリオン群の活動曲線とモデルによる推定値。 同じ活動曲線が得られる (図 I-7)。オリオン群の場合の係数と図 I-7 に示す推定値を表 I-1 に示すが、A と Rotation では異なる項を用いているので、C1 と C2 の大きさを両者で比較することには意味がないことに注意が必要である。

表 I-1:活動曲線モデルの係数

	C1	C2	C3	λs	max
А	37	37	1.3	209.5	320
Rotation	10	10	1.3	209.5	320

1.5.輻射点の推算と軌道計算

(x,y)座標での輻射点移動を(λ-λs, β)さらに(α, δ)座標に変換することは容易であり、地心速度の変化の推算値 と合わせれば軌道変化を推算することができる。座標変換も軌道計算の方法も多く書かれているのでここで は省略する。オリオン群の輻射点、地心速度、軌道要素の変化は表 I-2 のようになる。

表 I-2	:オリオ	トン群の	の輻射点、	地心	速度、	軌道要素							
λs	λ - λs	β	α	δ	V_g	е	q	i	ω	Ω	λ_{arDeta}	β_{Π}	а
190	251.3	-8.8	81.2	14.3	66.9	0.910	0.703	162.6	67.9	10.0	303.0	16.1	7.80
191	251.1	-8.8	81.9	14.4	66.9	0.909	0.696	162.7	68.8	11.0	303.1	16.1	7.69
	-途中略												
205	247.7	-7.8	92.7	15.6	65.9	0.913	0.591	163.6	81.5	25.0	303.8	16.3	6.76
206	247.4	-7.8	93.5	15.6	65.8	0.913	0.583	163.6	82.4	26.0	303.9	16.2	6.73
207	247.2	-7.7	94.3	15.7	65.7	0.914	0.576	163.7	83.3	27.0	304.0	16.2	6.70
208	246.9	-7.6	95.1	15.7	65.7	0.915	0.568	163.7	84.1	28.0	304.1	16.2	6.68
209	246.7	-7.6	95.9	15.7	65.6	0.916	0.561	163.8	85.0	29.0	304.2	16.1	6.66
210	246.5	-7.5	96.6	15.8	65.5	0.917	0.553	163.9	85.9	30.0	304.3	16.1	6.64
211	246.2	-7.4	97.4	15.8	65.4	0.918	0.546	163.9	86.7	31.0	304.4	16.0	6.63
212	246.0	-7.4	98.2	15.8	65.4	0.919	0.539	164.0	87.6	32.0	304.5	16.0	6.62
213	245.7	-7.3	99.0	15.9	65.3	0.920	0.531	164.1	88.4	33.0	304.7	15.9	6.61
214	245.5	-7.2	99.8	15.9	65.2	0.921	0.524	164.1	89.2	34.0	304.8	15.9	6.60
一途中	□略												
229	241.8	-6.2	111.5	15.7	64.2	0.940	0.417	165.2	101.2	49.0	307.4	14.5	6.93
230	241.6	-6.1	112.3	15.7	64.1	0.941	0.410	165.3	102.0	50.0	307.6	14.4	6.98

注目されるのは、オリオン群の近日点方向(λ_Π, β_Π)と軌道半長径 a がほぼ一定に保たれていることである。 流星群によっては近日点方向も軌道半長径も大きく変化するものが少なくない。

「2. 調査結果の概要」では、計算に用いた中心の座標及び、(x,y)座標での輻射点移動量を示したので、推定された極大における輻射点と軌道を示すだけとする。

1. 6. 近傍の活動の調査

図 I-1b と同じ条件で IAUMDSD に記載されている流星群を示したものが図 I-8 である。赤い四角がオリオン群として登録されているもので、中心によく集中している。小流星群では IAUMDCSD に登録されているものでもばらつきが大きく、しばしば混乱を引き起こしている。×はその他の名称を与えられているものである。

図 I-8: IAUMDSD に記載されている流星群。

2. 調査結果の概要

今回調査した 118 の流星群について、結果の概要を第 I-4~I-7 表に示す。

表 I-3: 図 I-8 の輻射点

Code	λs	λ - λs	β	V_g	x	У
0718XGM00	206	250.9	-10.6	68.1	-3.37	-2.81
1198XRO00	207.1	245.7	-7.7	50.3	1.47	-0.04
0008ORI03	207.5	247.1	-7.9	66.4	-0.01	-0.18
00080RI04	207.9	247.5	-7.8	66.2	-0.48	-0.19
0008ORI05	208	247.4	-8.1	65.4	-0.42	-0.50
0008ORI01	208.6	246.6	-7.4	66.2	0.15	0.16
00080RI00	208.7	246.6	-7.5	66.5	0.21	0.15
0008ORI06	209	246.7	-7.6	66.3	-0.03	-0.04
0008ORI02	209.8	246.3	-7.2	66.4	0.20	0.31

中心から3度以内(x, y)=(1.47, -0.04)に1198XROがある。 V_g =50.3とオリオン群より15km/s遅いので別群としたのであろう。このように主要群について地心速度が離れていることを理由に別群の存在が主張されてきたが、いずれも確認されていない。これも同様であろう。また、0718XGMはいわゆる「オリオン群の尻尾」の一員であり、この仲間を独立した流星群として認めるかについては慎重な議論が必要であろう。

表 I-4 は調査の原点となるデータとそれによって得られた、輻射点及び地心速度の太陽黄経による変化を示す。 これらの数値と元となる GMN のデータがあれば、第 I-5 表以降の数値は再現できる。Code は IAUMDCSD の 通番・略号・識別番号である。λs、λ-λs、βは IAUMDCSD に記載された数値で、これを原点として以下の調査 を行っている。ただし、原点としてふさわしくない場合には変更した(斜字で示したものである)。第 I-4 表が 太陽黄経順になっていないのは第 I-7 表に示したモデル化によって求めた極大の太陽黄経順に合わせたためで ある。この原点を中心に黄緯線に沿って黄経の減少する方向を x の正、黄経線に沿って黄緯の増加する方向を y 軸の正とした座標系上で輻射点の移動を直線近似する。x_a、x_b、y_a、y_bはその係数と定数項である。同様に V_a、 V_bは地心速度を一次近似した係数と定数項である。以下の表の項目も含めて、オリオン群によって具体的な例 は前項に示したので参照されたい。

表 I-5 は輻射点分布と活動曲線についての概要である。輻射点密度には、輻射点移動を補正した輻射点の分 布密度を中心からの距離 r(度)の指数関数 N=a*r^b で近似した場合の係数 a、b を示した。活動曲線については 5 種類の方法によって極大の太陽黄経と最大値を示した。流星群の活動は帰属すると判定された流星数の増減 によってあらわされる。多くの流星群では帰属するほとんどの流星が推定位置から 3 度以内に存在する。Nr<=3 は輻射点移動の推定位置から 3 度以内の流星について極大となる太陽黄経とその最大値を示している。それ でも十分な場合が少なくないが、際には観測自体の偏りが存在するため補正が必要となる。本稿では周囲の流 星数との比を取ることによって補正している。DR3_6 以下は単位面積(平方度)あたりの 3 度以内の流星数と 周囲の流星数との比によるものである。DR3_6 は中心から 3~6 度、DR3_10 は 6~10 度、DR3_15 は 10~15 度、 DR3_20 は 15~20 度の流星を比較に用いている。周囲の流星群の活動状況によって、これらを使い分ける必要 がある。表 I-5 に示した数値は太陽黄経で 3 度幅の移動平均によるものである。

表 I-6 は流星群の活動状況の概況を示している。2019~2023 は表 I-4 で示した調査期間にそれぞれの年で輻 射点の推定位置から 3 度以内に入る流星数である。多くの流星群で流星数が増加しているように見えるのは、 GMN の観測量が指数関数的に増加しているためである。ただし、2019 年は観測開始の年でありばらつきが大 きく、2023 年は 2 月までの資料を用いているため 0 と表示されるものが多数あることに注意が必要である。 C1~max までの数値は得られた活動曲線に最も適合するモデル化した流星群による活動曲線を表す数値である。 近日点方向の軸が固定されている場合(A)と軸が黄道面に沿って回転する(Rotation)という 2 つのモデルを用意 して、輻射点と地心速度から推算された軌道要素の変化により使い分けている。いずれの場合についても、C1 と C2 が活動の広がり、C3 が極大の鋭さを表すことになる。*As* と max は推定曲線によるものであるが、極大 の太陽黄経で小数点以下の値はあくまでグラフ上から得られたもので参考値に過ぎない。「III. 輻射点分布図 と活動曲線の活動曲線」には、この推定曲線を周囲の状況を考慮して選択した活動曲線とともに示した。

表 I-7 は表 I-6 で推定した流星群の極大に対応する輻射点と地心速度及び軌道要素で、本稿のまとめにあた る表である。一般に用いられている観測流星全体の平均値とは異なり、極大の時に対応した数値であることに 注意が必要である。

表 I-4:調査の)基点と	なる輻射	寸点及び	調査	範囲	と回帰分	折によって	得られた頼	「射点と地心	い速度の変	逐化
Code	基点					輻射点和	移動				
	λs	λ - λs	β	Δr	$\Delta\lambda s$	x_a	x_b	Уa	y_b	V_a	V_b
0647BCO00	13.3	175.25	29.14	3	10	0.1114	-0.8890	0.3953	-4.1319	-0.0341	27.0738
0040ZCY01	16	300.11	59.08	3	5	-0.0665	0.8988	-0.1696	2.6972	0.0498	42.6984
0841DHE00	19.5	232.08	46.26	3	5	-0.0808	1.6894	-0.1706	3.5906	0.0659	47.9721
0450AED00	20.2	292.83	29.85	3	5	-0.0907	1.5561	0.2029	-3.8530	-0.0931	62.4424
0839PSR00	25.1	211.69	34.29	3	5	-0.3084	7.8750	-0.2934	7.6928	0.4016	35.1350
0021AVB06	27.6	170.32	12.03	3	10	0.4675	-12.7715	0.2377	-6.2633	-0.1712	23.9921
0040ZCY02	32	299.63	57.79	3	5	0.6056	-18.7925	0.1266	-3.6641	-0.2587	49.9125
0006LYR00	32.2	241.39	56.72	3	5	-0.3003	10.0005	-0.3615	11.6821	0.2763	37.6836
0343HVI07	39.2	166.63	-1.2	3	5	0.6749	-25.9303	-0.1702	6.4895	-0.2917	29.7599
0348ARC01	42	311.73	56.56	3	5	-0.6159	23.8141	0.0831	-3.3468	-0.2936	52.9007
0519BAQ00	46.3	278.91	13.47	3	5	0.0807	-3.9730	-0.0060	0.0891	-0.0807	71.8886
0031ETA07	47	293.28	7.68	3	10	0.2451	-11.5905	0.0550	-2.4999	0.0423	63.5525
0531GAQ01	49.8	262.44	32.44	3	5	-0.1847	8.8321	-0.0961	5.4252	0.0751	58.3800
0854PCY00	53.8	276.79	71.98	3	10	0.2031	-10.4586	-0.0431	1.6777	0.0308	37.8613
0145ELY02	50	256.73	63.97	3	5	0.3748	-18.6410	0.0156	-0.2332	0.0250	42.6992
0520MBC00	56.8	244.94	4.28	3	10	0.2167	-12.7955	-0.0360	2.5228	-0.0625	69.1360
0061TAH	68	125	32	3	3	0.5295	-37.0384	5.4157	-371.2081	0.3260	-11.2406
0860PAN00	71.6	307.92	43.24	2	3	0.2750	-19.1996	0.3804	-27.0442	-0.1867	63.8194
0362JMC01	71	324.61	43.4	3	10	-0.1635	12.5697	0.3048	-21.7102	-0.1378	52.6056
0171ARI03	77	331.58	7.34	3	10	0.3638	-27.9298	-0.0141	1.5546	0.0781	34.5427
0458JEC00	82.3	248.13	47.78	3	3	-0.4362	35.3057	-0.2748	22.7932	0.1986	36.3117
0510JRC00	84	262.78	54.43	3	3	0.0372	-2.7745	-0.1620	14.5395	0.0859	42.5144
0069SSG03	90	185.16	-4.67	3	10	0.4559	-41.1943	0.0322	-4.6239	-0.1244	36.0361
0170JBO07	89.64	102.98	59.03	3	3	1.3028	-116.7491	0.2386	-21.1976	0.1806	-2.3079
0410DPI00	92	280.17	0.75	3	5	0.2026	-18.6893	-0.0231	2.4041	-0.0906	78.0196
0459JEO01	89	155.38	12.42	3	5	0.8038	-71.3080	0.3671	-33.0682	-0.1571	28.1574
0431JIP00	94.456	5252.88	37.39	3	3	-0.9655	91.2422	-0.5911	56.0458	-0.1943	76.8147
0867FPE00	96.7	254.6	16.38	3	3	0.1550	-15.1602	0.8084	-77.8719	-0.4798	112.6566
0372PPS_0	95	283.28	15.27	3	5	0.1076	-10.2750	0.1131	-10.3518	0.0100	65.3255
0164NZC03	101	209.69	12.71	3	15	0.1080	-10.6845	0.0367	-3.9905	-0.1068	49.6820
0370MIC00	100	209.87	-12.2	3	10	0.1416	-13.3029	-0.0707	9.0276	-0.1032	50.4880
1133TCS00	105.1	303.93	52.75	3	5	-0.1759	18.5893	0.1755	-18.4183	-0.1716	64.2561
0411CAN00	105	298.06	33	3	10	-0.0520	5.3959	0.0934	-10.0424	-0.1091	68.5495
0175JPE02	110.9	244.09	14.49	3	10	0.1214	-13.7635	-0.1099	12.1921	-0.0364	67.7813
0444ZCS00	113.2	277.79	42.82	3	3	-0.3796	43.0291	-0.3564	40.3444	0.1145	44.1326
0533JXA00	119	282.02	-4.77	3	10	0.2315	-27.8444	0.0120	-2.1535	0.0638	61.4211
0623XCS00	115	185	8	1.	55	0.2066	-24.1731	0.0250	-2.5507	-0.0952	36.1377
0372PPS_1	120	278.96	15.98	3	5	0.2976	-36.4379	-0.4713	57.1145	0.1406	49.5335
0184GDR00	125.3	167.84	73.73	3	3	0.3917	-49.0047	0.1612	-20.5705	-0.0961	39.6404
0001CAP06	126.1	179.64	9.72	3	5	0.3548	-43.9871	0.1272	-15.9994	-0.1677	43.3930
0005SDA00	127.2	208.56	-7.44	3	5	0.2687	-33.9557	-0.1063	13.5181	-0.1965	65.2986
0191ERI02	137	260.26	-27.26	3	15	-0.0024	0.5483	0.0019	-0.4129	0.0015	63.9874
0465AXC00	135.8	252.41	41.99	3	3	-0.8000	108.6428	-0.1896	26.2828	0.3021	14.5402
0007PER00	137	283.15	38.27	3	15	-0.0406	5.5172	-0.0661	9.3350	0.0129	56.9855
0012KCG	142	168	74	3	5	-0.3753	54.7644	0.6381	-93.1013	0.2353	-10.8706
0199ADC01	143.1	180.04	2.33	3	3	-0.0479	6.8369	-0.2221	31.8215	0.2127	-6.7381
AXD	145	142.50	77.47	3	5	0.2082	-30.4049	1.0378	-147.4059	0.2001	-7.6101
0026NDA10	144.8	207.24	6.81	3	10	0.0682	-9.7592	0.0382	-5.4769	-0.1244	56.4329
ZDR	155	30.19	83.82	3	5	-0.0627	7.5381	-0.8019	124.0229	-0.2273	56.7222
0523AGC00	155.1	263.11	63.51	3	5	-0.1546	23.9816	-0.0714	11.2097	0.0936	29.3975
0206AUR03	159	292.45	15.57	3	5	0.0855	-13.6587	0.1356	-21.2819	-0.0220	68.9463
0552PSO01	159	269.53	-24.3	3	10	-0.1719	29.5186	-0.0368	5.9337	-0.0001	65.5639
0694OMG00	164	307.13	16.76	3	10	0.1819	-29.6546	-0.0895	14.9512	0.1782	29.0183
0337NUE00	167.9	259.26	-20.67	3	15	0.1213	-19.9298	0.2203	-37.1078	0.0517	56.8959
0208SPE02	168	248.97	20.79	3	5	0.0415	-7.0712	-0.2061	34.7059	0.0360	58.0022
0215NPI04	176	196.75	3.87	3	15	0.1894	-31.6700	-0.0021	0.3102	-0.0687	40.1538
0081SLY00	169	294.7	32.27	3	5	-0.1719	28.9685	0.2176	-35.7013	-0.1830	89.7565
0757CCY00	171.64	142.43	51.4	3	5	0.6923	-118.6462	1.3672	-235.8800	0.0295	9.5829
0221DSX04	188	331.25	-11.32	3	5	0.1299	-23.8991	-0.2572	48.3283	-0.1272	56.3114

表 I-4(続き)											
Code	基点					輻射点和	移動				
	λs	λ - λs	β	Δr	$\Delta \lambda s$	x_a	x_b	Уa	\mathcal{Y}_b	V_a	V_b
0081SLY01	186	278.78	25.99	3	5	0.1003	-18.0282	-0.1652	29.5384	0.1175	43.8318
0281OCT00	193	279.98	61.97	3	3	1.1864	-229.2161	0.1633	-31.4408	-0.9496	228.6515
0924SAN00	196.7	214.37	29.45	3	5	-0.0063	1.1880	0.1951	-37.9924	-0.0398	24.7732
0825XIE00	196.1	227.54	-27.12	3	5	-0.0183	3.0992	-0.1149	22.0415	-0.1092	75.8460
0002STA_SE	202.6	194.82	-4.45	3	5	0.1977	-40.8473	-0.0345	7.0159	-0.0968	48.2632
0333OCU00	202.1	278.86	46.82	3	5	-0.5710	115.4577	-0.0059	1.1627	-0.0587	67.3791
0023EGE00	209.7	253.48	4.2	3	10	0.2135	-44.9085	-0.0613	13.3966	-0.0354	75.9489
0022LMI03	209	297.96	25.93	3	5	-0.0230	4.7739	0.1067	-22.0377	-0.0724	76.4444
0480TCA_OM	L210.5	283.37	13.63	3	15	0.2173	-45.5829	0.2711	-56.9822	0.0046	66.0806
0008ORI00	208.7	246.56	-7.45	3	10	0.2418	-50.6620	0.0682	-14.3876	-0.0714	80.5061
0524LUM00	215	284.08	36.9	3	5	-0.0562	11.8263	-0.2106	45.0985	0.0133	57.6923
0526SLD00	221.6	265.65	53.89	3	3	-0.2732	60.7616	-0.5100	112.5384	0.3182	-21.5505
0002STA_SF	221.5	190.70	-5.00	2	5	0.4893	-110.2697	-0.0676	15.4866	-0.3282	101.4279
0445KUM00	225	268.21	29.76	3	5	0.0110	-2.2506	-0.1798	40.0375	0.0387	56.2142
03380ER_DGI	E <i>225</i>	186.62	-18.20	6	25	0.3021	-67.8047	-0.2913	64.4547	-0.1381	59.5427
0018AND01	228.6	163.43	18.81	3	15	0.4525	-103.9499	0.5830	-131.5033	-0.1290	47.1005
0512RPU00	223	266	-43.46	3	10	-0.2728	59.1409	0.2348	-53.2242	0.1975	12.7893
0017NTA03	222.7	192.77	2.85	3	20	0.2493	-55.8429	0.0068	-1.9411	-0.1250	56.6041
0013LEO00	235.2	271.83	10.22	3	10	0.3128	-74.3409	-0.1568	37.0140	0.0475	58.5456
0394ACA00	247	215.81	-40.29	3	10	-0.0376	8.2361	0.3104	-75.8768	0.1184	15.3703
0246AMO00	239	239.65	-19.91	2	5	0.0288	-6.7519	0.0655	-15.7132	-0.1309	93.0950
0488NSU00	241.6	244.91	42.93	3	3	-0.4783	115.4909	-0.3742	90.7317	0.5148	-70.0019
0250NOO06	247	203.59	-8.24	3	10	0.3154	-78.0349	-0.0617	15.4998	-0.1540	80.7632
0257ORS03	243	190.78	-4.69	3	5	0.1671	-40.4572	0.0213	-5.2689	-0.0716	45.0609
1096NAC00	246.2	285.89	-19.99	3	5	0.0303	-7.8055	0.1777	-44.3511	0.1128	38.8415
0340TPY00	249.4	261.96	-39.09	3	3	-0.2619	65.8754	0.3503	-87.6017	0.3206	-19.8560
0336DKD01	252	243.06	61.66	3	5	-0.3642	91.4251	0.0718	-18.1264	0.0680	26.7305
0339PSU01	253	258.89	34.52	3	10	-0.1293	33.2236	-0.1445	37.3849	0.1253	29.3670
0334DAD00	256.5	266.12	62.96	3	15	-0.3261	83.5243	0.0121	-3.3008	0.0057	39.1135
0016HYD01	259.1	229.92	-16.76	3	20	0.1092	-28.8909	-0.0107	2.9956	-0.0700	76.6474
0502DRV00	252.5	286.95	13.84	3	10	0.1498	-37.4094	0.2763	-69.4976	0.0398	58.0096
0529EHY00	260.7	237.33	-14.70	3	20	0.1200	-31.1678	0.0405	-10.4720	-0.0420	72.8472
0255PUV00	254	258.16	-60.51	3	10	-0.3877	94.6079	-0.1294	31.7667	-0.0332	50.1627
0019MON01	261.5	202.13	-14.81	3	15	0.3146	-81.5491	-0.0659	17.0315	-0.1730	86.0296
0004GEM00	261.6	207.94	10.4	3	10	0.1016	-26.6594	-0.0462	12.2033	0.1051	6.3179
0335XV100	256.7	292.67	-4.56	3	15	0.2470	-63.8677	-0.0526	13.2224	0.0720	49.1877
0497DAB00	263.9	298.47	33.45	3	5	-0.0514	13.8764	0.3223	-85.6914	-0.1539	99.9159
0340TPY01	264	259.58	-33.53	3	5	-0.0569	15.0139	0.3278	-85.9806	0.2346	1.0001
0020COM03	275.9	242.79	20.53	3	30	0.0465	-12.5646	-0.0698	19.2142	-0.0055	64.2899
0015URS01	271	218.48	72.07	3	5	0.0334	-9.1414	0.5758	-155.8051	-0.2288	94.9921
0428DSV00	267.41	293.72	14.78	3	30	0.1307	-35.1538	0.1089	-29.3136	0.0201	60.6018
0784KVE00	276	257.77	-60.48	3	5	-0.6225	170.2818	0.1063	-28.3692	0.2457	-24.2441
0319JLE00	282.5	219.77	10.41	3	5	0.3376	-94.8099	0.0608	-17.3523	-0.4394	1/5.6/0/
0010QUA00	283.28	276.97	63.58	3	10	0.1717	-48.5025	0.2691	-/6.04/8	-0.2153	101.4334
0331AHY00	285.5	206.75	-25.99	3	10	0.2751	-79.1128	-0.0453	12.6156	-0.1425	84.0134
05150LE00	290	207.98	-6.91	3	5	0.2457	-72.0572	-0.2923	83.8488	-0.1049	/6.//10
0323XCB04	296	306.92	51.36	3	2	0.1063	-31.5950	0.1/04	-50./995	-0.066/	65.08/1
0341XUM06	298.4	218.3	25.85	3	2	0.4109	-122.5042	-0.3088	92.1558	0.1963	-17.6211
0404GUM04	299.7	217.38	74.32	3	5	-0.6969	208.5355	0.19/9	-59.1513	0.2712	-51.9283
0429ACB00	309.89	2/1.81	44.48	3	5	-0.5210	160.5070	-0.6344	195.3062	0.35/3	-52./269
0110AAN04	312	210.6	-1/.6/	3	10	0.0540	-17.2448	-0.0392	12.51/0	-0.0408	36.6646
042/FED00	315.1	228.34	/6.39	3	5	0.644/	-203.5258	-0.0605	18.4312	-0.2357	109.3789
1032FHY00	324.3	161.5/	-1/.83	3	2	0.3352	-108.2792	-0.6002	194.2505	-0.0559	34.3060
116611R00	331.9 222 7	285.23	-44.22	3	5	-0.6675	221.5964	0.2326	-/6.9/44	-0.0972	88.6073
0915DN000	555./ 244	2/1.99	-24.95	3	2	0.1423	-4/.1462	0.0408	-13.3988	-0.0/91	93.1613
024CV115B00	544 250	221.78	30.5 70.50	3	5	0.8277	-283.7017	0.2250	-//.0865	-0.5564	240.6420
U340AHEUI	33U 257 2	244.94	/0.58	5	5	-0.7213	232.3/10	-0.0416	14.8965	0.0511	10.49/9
UUIIEVIU6	557.2 259	186.68	5.39	3	10	0.2417	-86.8488	0.0442	-15.964/	-0.1314	/4.2940
U893EOP00	338	202.03	6.72	3	10	0.2195	-18.1953	-0.0268	9.5559	-0.0293	81.3416

表 I-5:輻射点密度の指数と活動曲線の極大を表す指標

Code	輻射原	点密度	Nr<=3		$DR3_$	6	$DR3_1$	10	DR3_1	15	$DR3_2$	20
	а	b	λs	max	λs	max	λs	max	λs	max	λs	max
BCO	5.66	-0.875	14.5	12	13.5	5.6	14.5	8.0	15.5	8.5	15.5	5.9
ZCY 0	5.83	-0.746	18.5	20	15.5	2.2	14.5	5.4	12.5	8.5	19.5	9.3
DHE	3.97	-1.137	19.5	23	19.5	8.1	19.5	11.7	19.5	9.4	20.5	5.3
AED	1.96	-1.552	17.5	22	23.5	13.5	21.5	12.0	18.5	13.3	18.5	12.3
PSR	4.12	-1.112	25.5	27	25.5	5.5	24.5	10.0	24.5	19.5	24.5	13.5
AVB	14.49	-1.052	17.5	27	23.5	6.5	28.5	9.1	23.5	8.7	28.5	8.4
ZCY 1	6.09	-0.669	32.5	20	29.5	1.5	32.5	4.3	32.5	7.5	32.5	11.2
LYR	122.80	-2.177	32.5	1326	33.5	31.9	32.5	184.7	32.5	214.4	32.5	314.8
HVI	8.93	-1.232	39.5	43	38.5	10.2	39.5	11.5	39.5	15.5	39.5	15.1
ARC	4.52	-1.035	40.5	17	46.5	6.0	41.5	13.1	41.5	14.2	40.5	12.8
BAO	4.18	-1.151	43.5	14	42.5	9.3	42.5	9.9	41.5	3.9	50.5	1.2
ETA	148.56	-2.660	44.5	612	45.5	85.8	48.5	400.1	43.5	636.8	45.5	605.0
GAO	3.93	-0.773	48.5	18	48.5	6.3	47.5	4.3	47.5	5.1	47.5	6.6
PCY	6.60	-0.680	50.5	14	46.5	4.7	55.5	7.6	54.5	9.2	54.5	6.6
ELY	14.88	-1.360	50.5	142	51.5	15.8	50.5	30.5	50.5	32.8	50.5	50.1
MBC	4.58	-0.945	59.5	12	56.5	7.7	54.5	8.1	53.5	9.3	58.5	7.5
ТАН	51.98	-2.375	69.5	1105	70.5	30.6	69.5	439.8	69.5	657.6	68.5	653.9
PAN	3.59	-1.219	71.5	22	72.5	31.5	72.5	10.3	72.5	9.5	71.5	10.0
JMC	5.48	-1.118	70.5	12	77.5	5.6	75.5	19.5	67.5	28.9	75.5	22.2
ARI	6.15	-1.562	80.9	25	80.3	56.9	81.3	148.9	80.7	316.9	78.1	325.4
JEC	7.86	-1 371	82.5	102	83.5	11.5	81.5	15.9	81.5	12.8	83.5	18.0
JRC	5.12	-1.067	83.5	46	84 5	67	84.5	11.2	84.5	11.6	84.5	15.0
SSG	11 33	-0.851	82.5	20	83.5	5.2	89.5	5.9	89.5	6.2	88.5	91
IBO	2.85	-1 132	90.5	18	91.5	95	89.5	10.6	89.5	14.2	89.5	11.5
DPI	5 11	-1 220	91.5	26	91.5	147	90.5	10.0	90.5	6.2	90.5	9.5
IEO	4 65	-1 259	92.5	20	93.5	12.7	91.5	23.3	92.5	19.4	92.5	10.4
IIP	5.82	-1 257	94.5	63	93.5	15.7	93.5	13.8	93.5	11 7	93.5	10.1
FPE	3 51	-0.919	96.5	21	95.5	4 1	95.5	54	95.5	6.1	95.5	6.7
PPS 0	17.26	-1 381	98.5	48	93.5	8 <u>4</u>	94.5	177	94.5	18.6	91.5	16.7
NZC	50.43	-1 454	107.5	72	110.5	89	110.5	30.3	102.5	34.0	102.5	34.8
MIC	10.78	-1 296	101.5	29	108.5	12.2	101.5	29.7	102.5	21.2	101.5	14.7
TCS	3 82	-0.909	101.5	14	102.5	3 5	101.5	61	102.5	73	101.5	27
CAN	25.86	-1 141	106.5	64	102.5	99	109.5	14.7	98.5	15.5	101.5	14.3
JPE	26.85	-1 355	108.5	80	109.5	16.4	109.5	17.2	109.5	26.3	109.5	25.5
ZCS	23.01	-1 539	113.5	166	113.5	193	112.5	24 7	113.5	30.4	113.5	29.6
IXA	23.01	-1 166	116.5	100	111.5	11.0	110.5	177	119.5	147	110.5	73
XCS	25 30	-1 374	117.5	81	116.5	63	118.5	157	119.5	21.8	117.5	31.5
PPS 1	8 99	-0.713	115.5	38	122.5	33	114.5	5 2	115.5	63	114.5	59
GDR	16.19	-1 706	125.5	185	125.5	23.3	125.5	40.0	125.5	46.8	125.5	46.2
CAP	91.85	-2.066	127.5	354	126.5	25.5	125.5	75.0	127.5	94.5	127.5	122.8
SDA	242.13	-2.408	126.5	996	126.5	32.6	127.5	187.9	126.5	250.2	126.5	357.8
ERI	33 73	-1 184	132.5	53	135.5	11.8	131.5	19.5	131.5	33.3	139.5	29.4
AXC	5.61	-0.907	135.5	41	135.5	7.2	136.5	5.9	135.5	6.7	135.5	5.4
PER	1586.13	-2.298	140.5	6711	140.5	36.3	140.5	561.6	140.5	1102.7	140.5	1169.8
KCG	37 71	-1.290	141.5	105	142.5	56	139.5	11.8	140.5	29.5	140.5	36.9
ADC	8.04	-1 193	143.5	138	142.5	91	144 5	11.0	144.5	16.0	142.5	17.6
AXD	11.96	-0 424	146.5	41	147.5	2.7	148.5	3 7	144 5	7.0	146.5	15.5
NDA	47.32	-1 128	152.5	73	152.5	53	140.5	153	144 5	12.5	150.5	15.0
ZDR	8.87	-0.705	152.5	33	156.5	3.2	1545	54	1545	6.0	149 5	7.8
AGC	10.92	-0.870	156.5	48	157.5	3.2 4 7	151.5	94	151.5	8.6	155.5	7.0 8.4
AUR	16.35	-1 232	158.5	74	157.5	74	159.5	9.1	157.5	8.2	158.5	8.2
PSO	16.01	-0 462	160.5	43	164 5),- 73	160.5	34	160.5	0.2 7 5	160.5	9.5
OMG	10.01	-1 010	163.5	24	169.5	6.0	162.5	11.5	164.5	, 5 7	164.5	67
NUF	35.48	-0.625	164.5	27 46	174 5	2.9	164 5	11.5 4 4	166.5	2.7 7 2	164.5	0.7
SPF	42.76	-1 514	166.5	235	166 5	21.9	166.5	79 R	166.5	34.1	166.5	2.5
NPI	46 66	-0 577	163.5	233 51	165.5	21.7	165.5	<u>2</u> 7.0 <u>4</u> 1	167.5	65	167.5	137.2
SLY 0	12.00	-1 159	169.5	48	168.5	2.5 8.6	169.5	11.6	168.5	10.5	169.5	11.1
CCY	11 23	-1 386	173 5	41	172 5	73	171 5	183	172.5	23.0	172.5	195
DSX	3 00	_1 300	188 5	13	192.5	36.0	186.5	134.7	190.5	179.1	188 5	111 7
DOM	5.77	1.577	100.5	15	174.5	50.0	100.5	1.57.7	170.5	1/2.1	100.5	111./

表 I-5:(続き)

Code	輻射	点密度	Nr<=3	;	DR3_	6	DR3_	10	DR3_1	15	DR3_	20
	а	b	λs	max	λs	max	λs	max	λs	max	λs	max
SLY_1	9.83	-0.606	189.5	37	190.5	3.2	190.5	3.9	185.5	5.3	185.5	4.9
OCT	10.52	-1.411	192.5	223	192.5	14.3	193.5	20.1	192.5	21.9	193.5	20.7
SAN	2.48	-1.147	197.5	14	196.5	3.7	197.5	6.7	196.5	6.3	197.5	4.7
XIE	3.50	-0.982	195.5	11	197.5	10.7	195.5	6.6	195.5	5.5	197.5	5.6
STA_SI	E 111.61	-1.393	204.5	301	203.5	9.5	200.5	17.5	201.5	41.8	206.5	70.1
OCU	16.46	-1.291	202.5	158	202.5	15.9	202.5	30.6	202.5	32.0	202.5	21.3
EGE	36.12	-0.970	208.5	61	212.5	6.0	207.5	6.8	199.5	2.7	212.5	3.0
LMI	28.61	-1.909	208.5	126	210.5	28.9	210.5	61.4	207.5	53.8	209.5	29.9
TCA	33.21	-0.901	211.5	38	196.5	7.4	208.5	8.1	210.5	7.7	202.5	4.9
ORI	803.97	-2.312	208.5	2436	208.5	43.1	208.5	227.9	208.5	222.8	210.5	331.8
LUM	8.98	-1.106	214.5	45	215.5	9.4	214.5	12.8	214.5	9.8	214.5	6.4
SLD	7.96	-1.060	221.5	77	222.5	6.2	221.5	7.1	221.5	6.9	221.5	9.8
STA_SI	F 211.97	-1.438	219.5	608	223.5	11.7	217.5	12.6	219.5	55.9	218.5	95.5
KUM	19.35	-1.158	222.5	155	223.5	10.8	223.5	10.8	223.5	11.3	223.5	10.6
OER	38.74	-0.778	217.5	36	246.5	4.7	235.5	11.8	247.5	9.1	247.5	3.2
AND	45.03	-1.313	239.5	103	239.5	20.0	239.5	41.3	243.5	39.9	240.5	43.5
RPU	5.75	-0.933	222.5	13	218.5	6.7	223.5	7.8	225.5	8.4	227.5	6.7
NTA	405.55	-1.474	222.5	420	229.5	18.9	228.5	10.7	225.5	48.2	224.5	90.9
LEO	155.21	-1.960	236.5	479	235.5	40.5	235.5	110.0	236.5	98.4	236.5	93.0
ACA	5.64	-0.9/6	243.5	17	238.5	4.3	242.5	10.2	239.5	12.8	238.5	12.8
AMO	9.78	-0.851	239.5	58	239.5	5.5	239.5	6.4	239.5	7.2	239.5	8.5
NSU	5.18	-0.903	241.5	29	241.5	4.5	241.5	5.4	241.5	5.3	242.5	4.1
NOO	120.81	-1.509	248.5	257	246.5	18.3	246.5	33.8	247.5	26.2	246.5	20.0
ORS	32.29	-1.018	247.5	82	246.5	4.4	247.5	2.4	238.5	5.2	247.5	10.8
NAC TDV 0	4.04	-0.80/	246.5	18	245.5	5.0	247.5	4.9	245.5	0.1 12.4	245.5	5.6
	5.98 24.50	-1.238	249.5	25	249.5	5./	249.5	8.8 10.4	249.5	12.4	249.5	8.8 45.2
DKD	24.50	-1.183	250.5	144	251.5	8.0	251.5	19.4	250.5	33.8	251.5	45.5
PSU	1/.04	-0.834	231.3	42	232.3	2.2	231.3	10.0	231.3	9.8	251.5	8.0 12.2
	23.92	-0.333	243.3	30 256	243.3	3.2 27.0	242.3	0.2 56.0	230.3	8.3 111 5	257.5	13.3
	200.55	-1.008	254.5	220	250.5	57.9	250.5	50.9 4 4	255.5	7.2	255.5	122.1
DKV EHV	11.12	-0.793	255.5	23 40	252.5	0.5	252.5	4.4	254.5	0.8	256.5	17.5
PUV	$\frac{12.30}{14.72}$	-1.021	203.5	22	271.5	63	272.5	18.0	253.5	33.2	250.5	17.3 44 7
MON	85.89	-1.330	259.5	149	249.5	21.3	250.5	30.8	255.5	57.1	258.5	383
GEM	1479 18	-2 934	262.5	13471	263.5	73.9	261.5	1139.6	261.5	4129.0	250.5	2326.3
XVI	16 30	-1 407	261.5	25	255.5	24.5	262.5	20.1	256.5	17.8	257.5	83
DAB	5 15	-1 299	263.5	27	261.5	26.2	263.5	14.4	263.5	16.8	263.5	6.0
TPY 1	5.05	-0.975	265.5	19	263.5	7.6	264.5	5.8	264.5	5.5	264.5	6.0
COM	198.34	-1.533	264.5	221	270.5	25.4	266.5	38.1	265.5	33.4	267.5	56.2
URS	38.25	-1.834	270.5	590	269.5	24.6	270.5	88.5	269.5	109.7	269.5	119.6
DSV	46.64	-1.133	274.5	33	269.5	11.2	274.5	12.3	273.5	13.5	270.5	19.4
KVE	4.56	-1.053	276.5	19	277.5	4.2	275.5	9.6	274.5	20.4	277.5	16.4
JLE	3.57	-0.985	281.5	13	282.5	13.2	282.5	4.6	280.5	3.4	280.5	3.0
QUA	156.55	-1.495	283.5	1689	283.5	12.4	283.5	94.2	282.5	271.8	282.5	380.1
AHY	19.69	-1.632	284.5	37	284.5	12.2	287.5	51.7	286.5	44.3	284.5	23.6
OLE	7.75	-1.013	288.5	32	288.5	5.8	288.5	13.4	288.5	9.9	288.5	6.7
XCB	6.36	-1.277	296.5	28	297.5	11.4	296.5	30.9	296.5	17.2	296.5	15.6
XUM	11.72	-1.596	298.5	90	298.5	21.1	298.5	65.0	298.5	24.6	298.5	22.9
GUM	11.20	-1.292	300.5	72	298.5	12.0	300.5	16.3	299.5	17.7	299.5	17.8
ACB	12.33	-1.070	307.5	109	308.5	12.3	307.5	10.2	308.5	10.9	308.5	13.0
AAN	7.28	-1.079	311.5	17	314.5	13.7	313.5	14.2	312.5	5.9	314.5	7.6
FED	3.49	-0.724	315.5	26	315.5	6.7	314.5	7.6	314.5	9.9	314.5	8.6
FHY	3.90	-1.042	324.5	14	325.5	7.7	325.5	6.5	325.5	6.1	326.5	5.8
TTR	2.41	-1.023	331.5	11	335.5	18.0	333.5	11.3	328.5	6.7	332.5	8.9
DNO	3.10	-0.991	334.5	13	335.5	13.5	338.5	9.5	333.5	7.1	333.5	6.8
TSB	3.46	-0.913	343.5	13	342.5	4.4	344.5	9.1	344.5	6.6	344.5	6.4
XHE	5.02	-0.942	350.5	26	351.5	9.9	351.5	8.7	351.5	8.5	351.5	12.4
EVI	16.98	-0.967	358.5	57	359.5	/.9	358.5	7.5	358.5	13.3	359.5	20.3
EOP	3.22	-0.997	363.5	11	358.5	12.0	355.5	11.3	356.5	7.0	356.5	6.5

表 I-6: 流星群に判定された流星数の変化とモデル化した活動曲線の指数 年ごとの流星数 モデル化した活動曲線の指数 Code 曲線種 C1 C2 C3 λs max BCO dr3 15 ZCY 0 dr3 15 DR3 15 19.6 DHE AED dr3 15 PSR DR3 15 24.7 dr3 $\overline{15}$ AVB ZCY 1 dr3 15 31.5 LYR DR3 15 1.5 32.3 HVI dr3 15 1.7 39.5 ARC dr3 15 BAO dr3 10 10.5 ETA DR3 15 1.5 44.3 dr3 15 4.5 4.5 GAQ dr3²⁰ 9.5 1.7 49.5 PCY 1.5 1.5 ELY DR3 20 50.2 MBC dr3 15 0.45 69.45 12000 TAH Nr3 PAN DR3 15 18.6 JMC DR3 20 1.8 DR3²⁰ 79.5 ARI 1.8 DR3 20 1.8 82.6 JEC JRC DR3 20 SSG DR3 20 JBO DR3 15 90.3 DR3²⁰ 91.2 DPI 1.2 DR3¹⁵ JEO 1.4 DR3¹⁰ 94.1 JIP DR3_10 FPE 95.8 PPS 0 1.6 98.5 DR3 15 NZC DR3 20 1.8 MIC DR3 10 0.7 101.3 TCS DR3 10 1.8 104.6 DR3²⁰ CAN 1.4 DR3 15 JPE 109.6 ZCS DR3 20 113.6 dr3 20 JXA XCS Nr 1.5 116.3 6.8 PPS 1 9.5 DR3 15 4.5 4.5 1.7 117.5 DR3 20 125.5 GDR 1.5 DR3²⁰ 126.9 CAP 1.6 **SDA** DR3 20 1.2 126.9 ERI DR3 20 1.8 132.3 DR3 20 1.2 AXC 135.5 PER DR3 20 140.5 DR3²⁰ KCG 1.3 141.5 ADC DR3 15 143.65 1.7 AXD Nr3 3.4 3.4 147.2 NDA DR3 20 2.2 153.2 ZDR Nr3 1.8 AGC DR3 20 155.4 9.3 AUR DR3 10 158.4 PSO DR3 20 160.4 DR3¹⁰ 11.5 OMG 163.2 DR3 20 2.5 165.5 NUE SPE DR3 20 166.9 NPI DR3 20 2.3 2.3 1.8 167.2 SLY 0 DR3 20 169.5 CCY DR3 20 1.8 173.4 DR3 20 188.5 DSX

+-(佐士 七)

DAD

HYD

DRV

EHY

PUV

MON

GEM

XVI

DAB TPY 1

COM

URS

DSV

KVE

JLE

QUA

AHY

OLE

XCB

XUM

GUM ACB

AAN

FED

FHY

TTR DNO

TSB

XHE

EVI

EOP

60

25

77

10

168

47

5

11

87

76

0

0

16

12

0

0

0 0

6

3

3

0

0

0

2

0

3

0

321

2375

457

表 I-6	(続き)								
Code	年ごと	の流星数				モデル化し	した活動	動曲線の	指数
	2019	2020	2021	2022	2023	曲線種	C1	C2	C3
SLY 1	8	26	69	131	0	DR3 10	3.5	3.5	2
OCT	27	9	55	154	0	DR3 ²⁰	55	55	3
SAN	2	3	22	6	0	Nr	27	27	1.8
XIE	11	12	21	16	0	DR3_6	18	18	1.8
STA_S	E 235	519	918	935	0	DR3_15	12.5	12.5	1.7
OCU	38	49	147	127	0	DR3_15	30	30	2
EGE	71	87	199	358	0	DR3_10	4.3	4.3	2
LMI	85	113	160	341	0	DR3_20	12	12	1.5
TCA	59	63	213	283	0	dr3_10	6.5	6.5	1.6
ORI	2165	2641	4574	10035	0	DR3_10	37	37	1.3
LUM	13	8	67	109	0	DR3_10	21	21	1.5
SLD	14	16	63	63	0	DR3_20	21	21	1.3
STA_S	F 285	190	767	3273	0	DR15_2022	2 2 2	22	1.3
KUM	25	70	152	132	0	DR3_20	9	9	1.4
OER	100	120	233	372	0	Nr3	8	3	1.8
AND	53	104	635	255	0	Nr_2021	20	20	2
RPU	11	32	40	47	0	DR3_20	3.7	3.7	2
NTA	1051	1548	3040	3538	0	DR3_20	19	19	1.3
LEO	305	741	1075	1697	0	DR3_10	17	13	0.9
ACA	17	13	35	60	0	dr3_20	4	4	1.5
AMO	26	29	46	85	0	DR3_20	65	65	0.8
NSU	12	16	25	53	0	DR3_6	35	35	1.3
NOO	277	310	959	1092	0	DR3_10	5	5	1.4
ORS	64	84	169	369	0	DR3_20	23	23	1.6
NAC	11	4	36	27	0	DR3_20	8	8	1.6
TPY_0	15	6	41	37	0	DR3_20	15	15	2
DKD	99	25	261	114	0	DR3_20	23	23	1.7
PSU	44	46	173	108	0	DR3 15	12	12	0.9

0	55	154	Δ	DD^{2}	55	55	2	102 55	65
9	33	134	0	DK_{3}_{20}	33	33	3	192.33	03
3	22	6	0	Nr	27	27	1.8	196.8	1.4
12	21	16	0	DR3_6	18	18	1.8	198.2	30
519	918	935	0	DR3_15	12.5	12.5	1.7	201.5	48
49	147	127	0	DR3 15	30	30	2	202.5	65
87	199	358	0	DR3_10	4.3	4.3	2	203.7	9
113	160	341	0	$DR3_{20}$	12	12	15	209.2	40
63	213	283	Ő	dr3 10	6.5	65	1.6	209.5	75
2641	1571 1571	10035	0	$DP_2 = 10$	27	27	1.0	209.5	220
2041	43/4	10055	0	DK3_10	57	57	1.5	209.5	320
8	6/	109	0	DR3_10	21	21	1.5	214.8	23
16	63	63	0	DR3_20	21	21	1.3	221.5	15
190	767	3273	0	DR15_202	22 22	22	1.3	222.2	157
70	152	132	0	DR3_20	9	9	1.4	222.8	19.5
120	233	372	0	Nr3	8	3	1.8	223	32
104	635	255	0	Nr 2021	20	20	2	224.5	23
32	40	47	Ő	DR3 20	37	37	2	226.2	-20
1548	3040	3538	0	$DR3_{20}$	10	10	13	220.2	112
741	1075	1(07	0	DR3_20	17	12	1.5	220.5	112
/41	10/5	1697	0	DR3_10	1/	15	0.9	235.4	140
13	35	60	0	dr3_20	4	4	1.5	239.5	12
29	46	85	0	DR3_20	65	65	0.8	239.6	17
16	25	53	0	DR3_6	35	35	1.3	241.7	8.5
310	959	1092	0	DR3 10	5	5	1.4	246.1	40
84	169	369	0	DR320	23	23	1.6	246.2	13
4	36	2.7	0	DR320	8	8	16	246.5	8
6	<u>41</u>	37	Ő	$DR3_{20}$	15	15	2	2494	11
25	261	11/	0	$DR3_{20}$	23	22	17	251	72
25	201	114	0	DR3_20	12	12	1./	251 5	12 7
40	1/3	108	0	$DR5_{13}$	12	12	0.9	251.5	13./
86	267	271	0	dr3_20	2	2	2	253.5	13
628	1832	1636	0	DR3_20	7	7	1.2	255.4	190
31	101	89	0	DR3_15	9	9	1.8	255.6	8
129	280	366	5	DR3_20	14	14	1.4	256.2	22
11	93	144	0	DR3 15	1.8	1.8	2.2	256.5	150
304	752	678	0	DR3_20	12	12	1.7	258.1	45
6746	11150	16924	0	DR3_15	37	37	17	261.85	7300
73	121	145	0	dr3 10	21	21	2	261.05	21
14	21	51	0	$DP_2 = 10$	10	10	2	262.0	18
14	21	50	0	DR3_10	19	19	ے 1 0	203.1	10
1/	31	50	0	DR3_20	8	8	1.8	204.3	/.5
/30	941	2114	440	DR3_20	12	12	1	267.5	6/
265	177	353	0	DR3_20	47	47	1.2	270.65	470
127	255	439	86	dr3_20	6	6	1.3	271.5	18
1	25	71	0	DR3 15	11	11	0.9	274.9	36
12	8	23	12	DR3_6	14	14	1.4	281.6	40
543	1239	1089	902	DR320	42	42	1.8	283.25	1150
48	83	219	73	dr3 15	6.6	6.6	14	283.8	47
8	14	219	10	Nr	23	23	1	288.3	22
14	1T 27	20	62	DD2 10	23	23	1 0	200.5	2.2
14	27	50 50	02	$DK5_{10}$	9 07	9	1.9	294.0	51
20	32	58	155	Nr3	27	27	1./	298.0	9/
30	17	47	151	DR3_20	15	15	1.8	299.8	26
25	19	114	125	DR3_20	45	45	2	307.5	21
22	13	73	58	DR3_20	4.5	4.5	1.7	312.5	7.5
9	5	39	18	DR3 15	70	70	1	314.84	58
2	7	5	47	$DR3^{-}6$	180	180	0.8	325.4	25
0	0	6	28	DR3_20	15	15	0.8	332.1	21
1	°	10	33	DR3 20	20	20	0.8	334.2	13
1 6	ے۔ 11	26	0	DR3_20	62	62	1	3/27	15
10	11	30 77	0	ULJ_1J	10	10	1	2510	10
10	23	104	0	$DK3_{20}$	10	10	1.0	331.9 250	10
19	194	124	0	DR3_15	38	38	1	358	15
14	21	23	0	dr3 6	24	24	1.5	358.2	12

dr3_6

λs

191.5

max

6

表 I-7:流星群の極大期における輻射点と軌道要素 Code 輻射点

Code	輻射点						軌道要	素						
	λs	λ - λs	β	α	δ	V_{σ}	е	q	i	ω	Ω	λ_{Π}	β_{Π}	а
BCO	13	174.6	30.1	199.6	24.5	26.6	0.945	0.696	22.7	248.0	13.0	259.4	-21.0	12.74
ZCY	16	300.4	59.1	299.2	40.2	43.5	0.867	0.909	74.3	143.4	16.0	184.6	35.1	6.84
DHE	19.6	231.9	46.5	256.2	23.9	49.3	0.944	0.749	85.1	241.2	19.6	208.4	-60.9	13.44
AED	20	293.1	30.1	307.2	12.0	60.6	0.949	0.734	121.4	116.8	20.0	245.9	49.7	14.37
PSR	24.7	211.4	34.7	241.7	14.6	45.1	0.985	0.439	67.9	277.7	24.7	314.4	-66.7	29.15
AVB	25	1714	117	199.6	44	19.7	0.725	0.709	7.0	252.4	25.0	277 3	-67	2.57
ZCY	31.5	299.1	58.1	308.6	42.5	41.8	0.721	0.904	737	139.4	31.5	198.0	38.6	3 25
LYR	32.3	240.8	56.7	272.1	33 3	46.6	0.951	0.919	79.4	214.6	32.3	219.5	-33.9	18 64
HVI	39	166.2	-13	202.9	-11.0	18.4	0 739	0.758	0.7	65.2	219.0	2.84.2	0.7	2.91
ARC	395	312.7	56.5	323.8	47.3	413	0.852	0.834	69.6	128.8	39.5	196.1	46.9	5 66
BAO	44	2793	13.3	321.3	-1.2	68.3	0.052	0.021	156.5	146.6	44.0	255.1	12.7	10.86
ETA	44 3	294.0	7.6	337.1	-14	65.4	0 949	0.52	163.7	95.4	44 3	308.6	16.2	11.06
GAO	48	262.5	33.3	304.1	14.5	62.0	0.911	0.984	122.8	198.8	48.0	217.5	-15.7	11.00
PCY	49 5	278.1	71.5	296.6	53.4	39.4	0.930	1 007	65.4	173.8	49.5	226.9	5 7	14 42
ELY	50.2	2563	64.5	290.7	43.7	44 0	0.955	1 000	74.4	191.6	50.2	233.4	-11.1	21.99
MBC	55	245.8	4.8	302.0	-15.3	65.7	0.932	0.565	169.7	265.1	55 O	150.0	-10.3	8 29
ТАН	69.45	125.3	36.9	208.9	28.0	11.4	0.552	0.905	105.7	199 5	69.5	268.7	-3.5	2 76
PAN	72	307.1	43.6	355.3	46.6	50.4	0.963	0.713	89.6	113.3	72.0	251.0	66.7	19 54
IMC	72	323 5	43.6	10.7	53.2	42.7	0.903	0.600	69.5	98.3	72.0	184.6	68.0	6.85
ARI	795	330.6	7.8	45.3	25.2	40.8	0.970	0.000	30.1	27.3	79.5	103.6	13.3	2 37
IFC	82.6	249.2	47.9	315.3	33.7	52.7	0.949	0.921	95.5	216.0	82.6	258.6	-35.8	18.02
IRC	84	2622	55.4	320.7	44 5	497	0.938	1 007	88.2	190.6	84.0	264.3	-10.6	16.02
SSG	87	186.7	-6.5	274.2	-29.9	25.2	0.777	0.462	6.2	104.3	267.0	11.4	6.0	2.07
IBO	90.3	101.2	59.4	221.1	48.5	14.0	0.680	1.015	18.4	184 7	90.3	274.8	-1.5	3.17
DPI	91.2	280.4	1.0	10.2	5 5	69.8	0.000	0.919	178.1	143.5	91.2	307.7	1.0	24.12
IEO	92	152.7	13.1	245.1	-8.2	13.7	0.502	0.889	5.0	226.8	92.0	318.7	-37	2 1.12
ПР	94 1	252.4	37.8	331.7	29.3	58.5	0.955	0.898	112.4	220.0	94.1	256.1	-36.8	20.17
FPE	95.8	254.9	15.9	345.2	11.0	66.7	0.936	0.843	1507	229.1	95.8	230.1	-21.9	13.17
PPS 0	98.5	282.9	16.1	13.3	23.2	66.3	0.950	0.879	150.8	135.2	98.5	319.4	20.1	7.06
NZC	101	202.9	12.4	309.6	-5.6	38.9	0.942	0.079	38.3	327.0	101.0	74.0	-197	1.90
MIC	101 3	209.9	-10.3	315.7	-27.6	40.0	0.958	0.094	34.9	148 7	281.3	74.8	173	2 24
TCS	101.5	303.6	52.7	13.7	65.4	46.3	0.893	0.858	80.9	131.9	104.6	274.6	473	8.03
CAN	101.0	298.1	32.7	27.0	46.5	57.1	0.918	0.630	112.9	108.5	105.0	334.4	60.9	8 35
IPE	109.6	244.6	14.6	348.8	11.1	63.8	0.949	0.574	148.6	263.9	109.6	206.7	-31.2	11 34
ZCS	113.6	277.9	42.7	7 5	50.8	57.1	0.934	0.996	107.6	163.5	113.6	298.7	157	15.02
IXA	115.0	283.2	-5.5	37.7	9.0	68.8	0.937	0.990	169.9	313.7	295.0	340.8	-73	13.02
XCS	116 3	185.1	84	301.8	-11 7	25.1	0.791	0.005	77	280.5	116.3	36.9	-75	2.32
PPS 1	117.5	280.5	17.7	29.1	30.8	66 1	0.842	0.926	148.3	143.8	117.5	329.4	18.1	5.86
GDR	125.5	167.3	73.4	280.1	50.0	27.6	0.978	0.920	40.4	202.1	125.5	322.1	-14.1	44 39
CAP	126.9	178.6	99	305.4	-93	22.1	0.759	0.599	7.2	267.1	126.9	33.9	-72	2 49
SDA	126.9	208.4	-74	340.0	-16.4	40.4	0.968	0.079	26.8	151.1	306.9	100.7	12.6	2.12
ERI	132.3	260.0	-27.4	39.5	-13.5	64.2	0.942	0.951	132.2	29.4	312.3	291.6	21.4	16 31
AXC	135.5	252.1	42.6	3.8	49.1	55.5	0.914	0.909	104.2	218.5	135.5	304.5	-37.1	10.56
PER	140.5	283.4	38.3	49.2	58.1	58.8	0.923	0.945	113.0	149.4	140.5	333.5	27.9	12.30
KCG	141.5	162.9	71.1	286.4	49.6	22.4	0 724	0.971	33.9	205.8	141.5	343.3	-14.0	3 51
ADC	143.65	180.1	2.2	325.3	-11.5	23.8	0.810	0.552	1.8	270.9	143.7	54.6	-1.8	2.91
AXD	147.2	140.6	82.8	274.3	59.7	21.8	0.654	1.006	34.8	189.4	147.2	334.9	-5.3	2.91
NDA	149	206.8	7.0	353.4	4.8	37.9	0.950	0.105	20.4	327.2	149.0	117.9	-10.9	2.09
ZDR	153.2	52.7	84.6	258.9	63.8	21.9	0.647	1.010	35.0	176.7	153.2	330.5	1.9	2.86
AGC	155.4	263.2	63.6	358.0	76.6	43.9	0.892	1.005	75.6	188.1	155.4	337.4	-7.8	9.28
AUR	158.4	292.6	15.8	91.2	39.2	65.5	0.961	0.667	148.2	108.0	158.4	47.5	30.1	16.93
PSO	160.4	267.4	-24.3	69.8	-2.4	65.5	0.874	1.002	138.3	9.5	340.4	333.3	6.3	7.96
OMG	163.2	307.1	17.1	115.2	38.8	58.1	0.948	0.300	130.8	63.7	163.2	110.3	42.7	5.72
NUE	165.5	259.1	-21.3	66.4	0.1	65.4	0.866	0.912	141.9	37.3	345.5	314.6	22.0	6.78
SPE	166.9	249.1	21.1	47.4	39.6	64.0	0.944	0.718	138.7	245.9	166.9	287.6	-37.1	12.76
NPI	167.2	196.7	3.8	2.1	5.1	28.7	0.830	0.287	5.1	305.2	167.2	112.5	-4.2	1.68
SLY 0	169.5	294.9	33.5	111.7	55.8	58.7	0.928	0.752	114.6	118.4	169.5	27.1	53.1	10.47
CCY	173.4	140.1	52.6	300.2	33.6	14.7	0.651	0.958	18.3	208.4	173.4	20.6	-8.6	2.74
DSX	188.5	330.6	-11.5	156.5	-2.5	32.3	0.869	0.147	24.3	213.4	8.5	219.5	-13.1	1.12

表 I-7(続き)

Code	輻射点						軌道要	素		
	λs	λ - λs	β	α	δ	V_g	е	q	i	ω
SLY_1	191.5	277.5	23.9	115.2	45.7	66.3	0.919	0.966	138.5	158.
OCT	192.55	281.6	62.0	167.6	78.6	45.8	0.946	0.991	77.9	169.
SAN	196.8	214.4	29.8	37.9	46.5	16.9	0.516	0.396	21.4	320.
XIE	198.2	228.1	-27.8	69.1	-6.1	54.2	0.981	0.383	103.0	104.
STA_S	E 201.5	195.8	-4.4	36.4	9.8	28.8	0.831	0.301	5.7	122.
OCU	202.5	279.1	46.8	145.7	64.2	55.5	0.942	0.979	100.7	164.

Coue	THAT W						护坦女	213						
0137.1	λs	$\lambda - \lambda s$	β	α	δ	V_g	e	q	<i>i</i>	ω	Ω	λ_{Π}	β_{Π}	a 11.07
SLY_I	191.5	277.5	23.9	115.2	45.7	66.3	0.919	0.966	138.5	158.4	191.5	28.0	14.1	11.97
OCI	192.55	281.6	62.0	16/.6	/8.6	45.8	0.946	0.991	//.9	169.1	192.6	10.2	10./	18.44
SAN	190.8	214.4	29.8 27.9	57.9 60.1	40.3	10.9	0.310	0.390	21.4 102.0	520.5 104.1	190.8	240.0	-13.4	0.82
AIE STA SE	198.2	228.1	-27.8	09.1	-0.1	24.Z	0.981	0.383	105.0	104.1	10.2	240.0	/0.9	19.75
SIA_SE	201.5	195.8	-4.4	30.4	9.8	28.8	0.831	0.301	5./ 100.7	122.0	21.5	144.2	4.8	1.78
ECE	202.5	279.1	40.8	143.7	04.Z	55.5 69 7	0.942	0.979	100.7	104.2	202.3	23.3	13.3	10.87
EGE	203.7	234.9	3.1 26.2	99.7	26.5	00./ 61.2	0.917	0.789	170.4	233.7	203.7	528.4 07.2	-/.9 52.4	9.52
	209.2	290.0	12 /	120.5	20.8	67.0	0.939	0.010	124.3	102.0	209.2	97.5	185	13.13
OPI	209.5	205.4	13. 4 7.5	06.3	15.8	65.5	0.000	0.645	163.8	85.4	209.5	304.3	16.5	4.59
	209.5	240.0	-7.5	158.2	10.0	60.5	0.910	0.007	105.0	1/6 0	29.5	504.5	20.6	18 01
SUD	214.0	265.7	53.5	161.6		48.9	0.732	0.915	88.5	189.8	214.0	20.5 41.8	_9.8	3.81
STA SE	221.5	192.3	-4 5	53.2	14.5	28.5	0.837	0.351	54	114 7	42.1.5	157.0	-9.0 4 9	2 16
KUM	222.2	268.0	29.7	144.4	45.8	64 8	0.037	0.988	129.2	186.9	222.8	38.4	-53	14.81
OER	222.0	187.1	-18.7	52.6	-0.3	28.7	0.955	0.200	19.1	97.1	43.0	140.5	18.9	3 74
AND	224 5	165.9	18.2	21.2	28.5	18.1	0.751	0.763	94	242.4	224.5	106.6	-8.3	3.06
RPU	2262	269.6	-43.5	125.1	-25.5	57.5	0.902	0.990	106.3	2 12.1	46.2	45.6	2.1	10.14
NTA	226.5	192.1	2.4	55.8	22.2	28.3	0.833	0.352	2.9	294 7	226.5	161.2	-2.6	2.11
LEO	235.4	272.5	10.3	153.9	21.8	69.7	0.829	0.984	162.0	171.6	235.4	63.4	2.6	5 74
ACA	239.5	216.8	-41.8	95.0	-18.5	43.7	0.917	0.553	70.0	85.4	59.5	136.3	69.5	6.69
AMO	239.6	239.5	-19.9	117.2	0.8	61.7	0.963	0.469	133.3	94.0	59.6	323.7	46.5	12.74
NSU	241.7	245.1	43.2	148.9	59.4	54.4	0.925	0.813	98.9	230.8	241.7	51.0	-49.9	10.88
NOO	246.1	204.0	-7.9	90.1	15.5	42.9	0.992	0.111	24.6	141.4	66.1	210.2	15.0	13.22
ORS	246.2	190.1	-4.7	75.6	18.0	27.4	0.820	0.392	5.1	109.7	66.2	175.9	4.8	2.18
NAC	246.5	286.2	-20.5	165.0	-16.0	66.6	0.934	0.812	141.8	309.3	66.5	110.3	-28.6	12.31
TPY 0	249.4	261.2	-39.3	138.3	-25.5	60.1	0.951	0.955	112.5	20.7	69.4	61.2	19.1	19.52
DKD	251	243.0	61.5	186.1	70.5	43.8	0.910	0.929	73.2	208.6	251.0	79.9	-27.3	10.28
PSU	251.5	258.0	35.6	168.1	44.2	60.9	0.896	0.917	117.2	211.4	251.5	55.9	-27.6	8.78
DAD	253.5	264.2	62.7	204.6	62.2	40.6	0.604	0.981	72.0	188.5	253.5	76.1	-8.1	2.48
HYD	255.4	231.0	-16.5	124.7	2.7	58.8	0.982	0.255	129.1	119.7	75.4	303.2	42.4	14.27
DRV	255.6	286.0	15.0	187.5	13.1	68.2	0.935	0.795	152.0	126.8	255.6	125.3	22.1	12.16
EHY	256.2	237.8	-14.8	132.2	2.4	62.1	0.964	0.375	142.3	105.1	76.2	327.3	36.2	10.31
PUV	256.5	268.3	-61.6	134.7	-49.2	41.6	0.612	0.984	74.1	3.2	76.5	77.4	3.0	2.53
MON	258.1	202.5	-14.8	100.4	8.3	41.4	0.983	0.185	35.3	129.8	78.1	213.6	26.4	10.71
GEM	261.85	208.0	10.5	113.3	32.4	33.8	0.889	0.146	22.9	324.1	261.9	228.1	-13.2	1.31
XVI	262.8	291.6	-5.2	191.3	-10.5	68.1	0.950	0.624	169.4	284.4	82.8	158.2	-10.3	12.45
DAB	263.1	298.1	32.6	212.1	21.9	59.4	0.972	0.675	113.5	111.2	263.1	128.9	58.7	24.18
TPY_1	264.3	259.6	-32.9	152.0	-23.9	63.0	0.936	0.929	122.5	27.9	84.3	68.4	23.2	14.46
COM	267.5	242.9	21.1	161.0	30.9	62.8	0.943	0.557	134.2	263.9	267.5	6.2	-45.5	9.77
URS	270.65	218.8	72.1	219.4	75.4	33.1	0.814	0.940	52.8	205.6	270.7	106.8	-20.2	5.06
DSV	271.5	293.4	15.0	208.5	4.4	66.1	0.950	0.612	148.8	103.0	271.5	166.4	30.3	12.23
KVE	274.9	259.4	-59.6	142.3	-50.5	43.3	0.657	0.969	76.8	15.4	94.9	98.5	15.0	2.82
JLE	281.6	219.5	10.2	147.0	24.1	51.9	0.991	0.049	103.6	335.3	281.6	287.8	-23.9	5.67
QUA	283.25	276.7	63.8	230.0	49.7	40.4	0.640	0.980	70.9	172.0	283.3	100.6	7.5	2.72
AHY	283.8	207.9	-26.2	127.1	-8.0	43.6	0.969	0.285	58.1	116.2	103.8	236.8	49.6	9.28
OLE	288.3	209.2	-7.3	137.7	8.6	46.5	0.995	0.052	37.4	154.0	108.3	267.1	15.4	10.11
XCB	294.8	307.3	50.8	250.2	29.3	45.4	0.826	0.775	78.1	122.0	294.8	96.5	56.0	4.45
XUM	298.6	218.1	25.8	169.5	32.8	41.0	0.853	0.221	67.2	313.2	298.6	276.2	-42.2	1.50
GUM	299.8	218.8	74.5	229.7	67.3	29.4	0.654	0.954	48.2	202.7	299.8	135.4	-16.7	2.75
ACB	307.5	271.4	44.7	231.3	27.9	57.2	0.918	0.984	104.5	176.5	307.5	128.4	3.4	11.97
AAN	312.5	211.0	-17.4	158.1	-9.6	43.9	0.957	0.138	56.6	139.3	132.5	287.2	33.0	3.19
FED	314.84	230.6	76.0	239.3	61.8	35.2	0.947	0.970	55.3	194.6	314.8	143.2	-11.9	18.28
FHY	325.4	160.7	-18.9	123.9	0.4	16.1	0.693	0.823	8.4	53.6	145.4	198.7	6.8	2.68
TTR	332.1	285.4	-43.9	247.0	-66.4	56.3	0.939	0.916	103.0	328.0	152.1	160.1	-31.1	14.94
DNO	334.2	271.5	-24.9	237.8	-45.7	66.7	0.918	0.987	137.3	354.2	154.2	158.5	-4.0	11.99
TSB	343.7	220.8	36.7	216.7	24.6	49.4	0.987	0.497	82.0	270.2	343.7	255.1	-82.0	37.88
XHE	351.9	249.0	70.8	255.9	48.8	34.5	0.629	0.982	59.3	194.1	351.9	179.2	-12.1	2.65
EVI	358	18/.0	5.3	186.7	2.8	27.2	0.818	0.439	5.4	284.0	358.0	282.0	-5.2	2.42
FOL	358.2	262.8	6.7	260.7	-16.5	/0.8	0.937	0.954	168.4	204.0	358.2	154.6	-4.7	15.23

3. 前回の流星群表との比較

今回初登場したものの多くは、活動が弱くて前回は活動をはっきりと捉えることができなかったものである。また、一部、南天の流星群も含まれるようになった。その一方で、今回取り上げなかったものには、0027KSE、0152NOC、0183PAU、0388CTA、0097SCC、0096NCCがある。KSEの場合は前回基準としたKSE03がIAUMDCSDから削除されたためで、詳しくは「注意が必要な流星群」を参照されたい。他の4つの活動は今回適用して基準を満たさなかったためである。SCCとNCCについては「注意が必要な流星群」で詳しく説明した。

調査の方法は前回と同じであるが、唯一、異なるのは流星が群に属するかの判定に地心速度の回帰直線から ±3km/s 以上離れた流星を排除したことである。今回は散在流星に比べて出現数があまり多くない流星群が多 いため、散在流星の可能性があるものを除く必要があるためである。この違いは、前回取り上げた流星群に対 しては、大きな影響を及ぼしていない。

前回と今回での大きな違いは使用したデータベースにあるので、SonotaCoネットのデータと GMS とではどのような違いがあるか述べておく。4 点ある。

第一は流星数の違いである。今回使用した GMN の流星数は前回の2 倍以上あり、これによりさらに弱い活動の流星群が検出されるようになった。しかし、GMN の観測数は指数関数的に増加しており、流星群の年変化を考察するには注意が必要である。また、これにより、2022 年の観測に依存することが多く、2022 年の観測条件が大きく影響を与えていることにも注意せねばならない。

第二は観測期間の違いである。前回の SonotaCo ネットは 2007~18 年の観測を用いたが、今回の GMN の観 測は 2019~23 年 2 月までである。そのことにより、今回は 2007~9 年に活発化したオリオン群の活動について は触れることができなかったが、逆に 2021 年のアンドロメダ群、2022 年の 73P/Schwassmann-Wachmann 3 彗 星関連群の突発についてのデータが得られている。

第三は観測地点の経度に広がりがあることである。西ヨーロッパと北アメリカの観測が主体であるが、ほぼ 半日間の連続した観測が得られ、極大が短時間である流星群を捉えることができるようになった。上で触れた 突発を捉えているのもこのためである。しかし、経度による観測地点数に違いがあるので、流星数の増減が必 ずしも流星群の活動変化を示さないことは当然であり、注意が必要である。

最後は、GMN には南天の観測が 含まれることである。まだ観測量 は少ないが、図 I-9 に示すように南 天の活動を捉えることが可能とな っている。南半球は海が多いので、 時間的に連続した観測ではないが、 今回は 0255PUV00、0784KVE00、 1166TTR00、0915DNO00 のように 赤緯が-40 度以南の流星群も捉え られている。今後の展開によって、 新しい流星群の発見、また、従来は 眼視観測のみから論じられていた 流星群について有用な知見がもた らされるものと期待される。

図 I-9: (*λ-λs*, *β*)座標系で表した*λs* = 250~260 の GMN で観測された輻射 点分布。中心は(*λ-λs*, *β*) = (270, 0)。

4. 謝辞

本稿は観測者諸氏の熱心な活動がなければなし得なかったものであり、筆者として SonotaCo ネット、GMN のメンバーに心よりの感謝をささげる。

参考文献:基本的な元データに限定する。

GMN の流星データ:https://globalmeteornetwork.org/data/traj_summary_data/ GMN の流星群表:https://globalmeteornetwork.org/projects/2023_gmn_shower_table/ SonotaCo ネットの J14 リスト:https://sonotaco.jp/doc/PDA/J14/ IAUMDCSD:https://www.ta3.sk/IAUC22DB/MDC2022/

Ⅱ.注意が必要な流星群

IAUMDCSD もそうだが、この流星群表についても困るのは、「表に掲載している流星群はその通りに存在する」という受け止め方をされることである。0027KSE は「確定群」とされているが、前回基準として用いた KSE03 は削除された。ところが KSE03 の隣にある 0839PSR00 は未確定ながら、しっかりとした活動をしている。この KSE と PSR の関係については以下で詳しく説明する。似たような状況は多くあるが、本稿に関係する範囲に限定して、「I. 調査方法及び調査結果の概要」だけでは誤解を招く可能性があるものについて説明することとする。簡単な説明で済む場合には、「III. 輻射点分布図と活動曲線」の中で補足した。取り上げるのは次の 14 の事例である。

- 1. 0027KSE と 0839PSR
- 2. 0040ZCY と 0348ARC
- 3.0061TAH:木星族の彗星に関連する流星群の名称
- 4.0372PPSの周辺
- 5. 0165SZC と 0370MIC
- 6. 0012KCG 周辺: 0012KCG, AXD, 0073ZDR, 0197AUD
- 7. 0033NIA と 0215NPI
- 8. オリオン群の尻尾
- 9.0081SLY00 と 0081SLY01
- 10.0480TCA と 0481OML
- 11.0002STA と 0017NTA の細分化
- 12.03380ER と 0490DGE
- 1 3. 0340TPY00 と 0340TPY01
- 14.0096NCC と 0097SCC

1. 0027KSE & 0839PSR

KSE の最初の観測はスーパーシュミットで捉えられたわずか4個の写真流星である。しかし、現在のビデオ観測では対応する流星群は見出されていない。PSR の位置は写真流星の位置と一致するが活動時期が太陽

図 II-1-1: KSE 周辺の輻射点分布。a: GMN(左)、b: IAUMDCSD(右)。

表 II-1-1: 図 II-1-1b に登場する IAUMDCSD の輻射点。

						-		
Code	λs	λ - λs	β	V_g	距離	方位	x	У
0027KSE00	14.7	207.7	35.1	45	3.36	285	3.26	0.84
0517ALO00	15.5	226.9	22.1	55.7	18.06	128	-14.18	-11.19
0027KSE01	15.7	209.9	33.3	45.01	1.84	236	1.53	-1.03
0841DHE00	19.5	232.1	46.3	49.5	19.53	46	-14.07	13.54
0027KSE02	20	213.7	36.6	46.7	2.79	35	-1.60	2.29
0836ABH00	20.3	223.1	44.6	47.5	13.50	37	-8.12	10.79
0839PSR00	25.1	211.7	34.3	46.3	0.00	0	0.00	0.00

黄経で 10 度ほど遅い。図 II-1-1 は PSR(λ - λ s, β) = (211.69, 34.29)を 中心として λ s=10~30 の範囲の流 星活動を示している。左側は GMN の 観 測 で 、右 側 は IAUMDCSD の KSE を■、その他 の流星群を×、写真流星を〇(最 初に KSE とされたものは〇) で

表したものである。図 II-1-1b に登場する IAUMDCSD の輻射点は表 II-1-1 に示す。PSR は KSE と同定でき るように見えるが、PSR の活動曲線は狭く、写真観 測の KSE の平均3s=14.7 での活動は考えられない。 IAUMDSD には現在 3 つの登録があるが、KSE00 と KSE01 はいずれもこれら 4 個の写真流星を基礎とし ている。KSE02 は CAMS の観測で 3 度の円の左上の ものだが、これは後述のように PSR と図 II-1-1a で 6 度の円の左上にある活動とを混ぜ合わせたものと推 定できる。この 6 度の円上の活動は CAMS の観測に よる KSE03 に相当する(現在の IAUMDCSD では削 除されている)。参考のために KSE03 を基に他の流

図 II-1-2: KSE03 から推定される活動曲線。

星群と同様の処理を行って推定される活動曲線を図 II-1-2 に示す。

ビデオ観測でも写真観測でも、この領域で得られる輻射点は多く、写真観測で KSE とされたものは散在流 星の偶然の集合か、或いは、半世紀前に活動していて現在では見られなくなったものかもしれない。

SonotaCo ネットと GMN もともに PSR を掲載している。GMN では面白いことに KSE として今は IAUMDCSD から削除されている KSE03 を KSE の値として採用している。

2. 0040ZCY と 0348ARC

うにみえる。

ZCY はもともと、Jacchia と Whipple が"precision orbit"として測定された 413 個の写真流星の中から 2 個の よく似た流星について#40 の番号を付けたものに対して、Jenniskens が 10 度以上も離れた Sekanina のレーダ 一観測を結び付けたものである。現在では写真観測の#40 とは別の活動が 0040ZCY と呼ばれている。

図 II-2-1a は(λ-λs, β) = (307, 59)を中心としてλs=0~50の期間の GMN による輻射点分布を示したものである。 0040ZCY、0348ARC、0409NCY がいずれも雑然とした輻射点分布の中に存在していることが分かる。 輻射点分布を太陽黄経で 5 度ごとに区切ってみると、周囲の活動から比較的はっきりと区別できるのは ARC である。一方の ZCY の活動は活動曲線から、λs=15 付近(ZCY01)とλs=30 付近(ZCY02)の 2 つに分けられるよ

このことから本稿では ZCY01(*ls* = 5~25)、ZCY02(*ls* = 20~40)、ARC00(*ls* = 30~50)の3 つの活動に分けている。図 II-2-1b はそれぞれの期間の輻射点移動を示したもので、ZCY01 と ARC00 は図上を右から左(西から東)に移動しているが ZCY02 は、ほぼ静止し、下から上(やや左から右)に移動するという奇妙な動きをしている。しかし、活動曲線がきれいに増減を示すのは ZCY02 である。

輻射点移動を考慮すると ARC と ZCY02 の活動は*ls*=30~35 の範囲で接近しており、ZCY02 を介して ZCY01 から ARC に接続している可能性も否定できない。ZCY02 の奇妙な輻射点移動は ZCY01 と ARC の干渉による ものかもしれない。ZCY01 また ARC の活動曲線には、ZCY02 の活動の影響がみられる。

図 II-2-1: ZCY と ARC 周辺の輻射点分布。a: GMN(左)、b:本稿で推定した輻射点移動経路。

輻射点分布に見られるように周囲の散在流星の活動は活発であり、確実な結論を得るにはさらなる観測が必要である。0409NCY は散在流星の活動または ZCY の一部と考えられる。

SonotaCo ネットの J14 リストには ZCY も ARC も登場しない。GMN は 2 つを掲載しているが ZCY を 1 つ としてまとめている。

3.0061TAH:木星族の彗星に関連する流星群の名称

2022年に73P/Schwassmann-Wachmann 3 から放出された流星物質が地球と遭遇して活発な流星群の活動が見られた。しかし、これを TAH(tau-Herculids)と呼ぶことはあまり適切ではないと考えられる。

一つには TAH は Southworth と Hawkins によって D_{SH} を用いて写真観測から検出、命名された流星群で、非常に輻射点の広がりが大きいことである。TAH00の輻射点(λ - λ s, β) = (135.51, 54.79)を中心に λ s = 57.6~87.6の期間に得られた輻射点の分布を図 II-3-1a に示す。実は tau Herculids は左の図で◇で示した 2 個の写真流星に対して名づけられたものである。その後、Lindblad により+で表した 14 個の写真流星からなる流星群が同じものと考えられて、これも tau Herculids(TAH00)と呼ばれるようになったのである。しかし、◇の写真流星はそれぞれ、 λ s = 89.40、 λ s = 93.80 で観測されたもので、TAH00 よりかなり後に出現しているものである。この同定自体にも問題があるが、写真流星は半径で 20 度近い範囲に広がっている。図 II-3-1b は同じ期間に GMNで観測された流星である。右下に見えているのが 2022 年に観測された活動による輻射点である。流星群を軌道(D_{SH})によって定義するか、輻射点と地心速度によって定義するかで大きな違いを生じる例である。

図 II-3-1:TAH 周辺の輻射点分布。a: IAUMDCSD と写真観測(左)、b: GMN(右)。

次に木星に接近する軌道をもつ彗星、流星群は軌道がしばしば大きく変化して、輻射点の位置も大きく変化 することである。表 II-3-1 は名前の元となったヘルクレス座τ星を中心にとって、輻射点の位置関係を示した ものである。H2-7920 と H2-12711 は tau Herculids の名前の元となった流星、TAH00 と TAH02 は IAUMDC に

表 II-3-1: TAH として観測された流星と流星群	
のヘルクレス応病見からの古向角と距離	

	庄に生かり			b
Source	α	δ	方向角	距離
22 tau Her	244.9	46.3		
H2-7920	258.9	50.3	61.4	10.1
H2-12711	238.2	46.3	271.7	4.7
0061TAH00	228.5	39.9	247.8	13.6
0061TAH02	230.4	44.8	266.8	10.3
GMN	208.9	28.0	249.8	33.6
2022	210.0	27.4	247.7	33.3
2027	200.4	10.2	240.8	52.2
2049	200.0	9.3	240.5	53.2

登録されている流星群。GMN は 2022 年に GMN で観測された結果、2022~2049 は Jenniskens の大著の中で触れられている予想値である。輻射点の名称は近い恒星の名前からとるという大原則が大きく崩れることが分かる。

このように発見当初の位置から輻射点が大きく移動して 名前にそぐわなくなることは、軌道が木星に近づく場合に は珍しくない。現在、IAUMDCSDでは母天体の名前を用い ないということになっているが、再考の必要がある。

最後に、今回のデータは 2022 年のものであり、毎年出現 するわけではないことと強調しておく。輻射点の位置も活 動曲線も次の出現の時には違ったものになるということで ある。

4.0372PPSの周辺

図 II-4-1:"PPS"の輻射点移動。a: GMN(左)、b: 太陽 黄経 10 度ごとの輻射点の黄緯の推算値(上)。

45-125

(λ-λs, β) = (282.4, 16.4)を中心としたλs = 45~125の期間の輻射点分布は図 II-4-1a のようになる。中心が PPS で、左下が ETA である。あたかも ETA から PPS を通って上に伸びる活動があるかのようである。「オリオン 群の尻尾」という存在があるが、水瓶から魚に流れる水とも例えられそうである(星座としては、みずがめ座 から流れ出た水は、みなみのうお座の口に流れ込む)。この流れのどこからどこまでを PPS の活動とみなすの かは、「オリオン群の尻尾」の中の活動をどう区切るかという問題に似て複雑である。

 $\lambda s = 85$ における輻射点を(λ - λs , β) = (285, 13)と仮定して、他の流星群の場合と同様に回帰直線が収束するようにして輻射点移動を求め、太陽黄経で前後5度の位置を次の輻射点として、この操作を繰り返した。

輻射点の黄緯(β)について結果を示すと図 II-4-1b のようになる。 $\lambda s < 85$ はそれ以前とは異質のようにみえる。この $\lambda s < 85$ の活動が ETA とどのようにかかわるのかは今後の課題である。 $\lambda s > 85$ でも $\lambda s = 115$ を中心として求めた輻射点移動($\lambda s = 110~120$ の線)は異質である。($\lambda - \lambda s$, β) = (279.0, 16.0)を中心に $\lambda s = 115~125$ の輻射点分布について調べると、図で $\lambda s = 115~125$ として+で示している移動が求められる(図ではこの結果を前後に各5度外挿している)。図 II-4-1a で中心から右下方向に広がっている輻射点分布に相当する。

5. 0165SZC と 0370MIC

現状の IAUMDCSD では 0370MIC と分類されるべきものが 0165SZC に入れられている。表 II-5-1 に見るように 0165SZC00, 01 はそれ以下の報告と全く異なっている。0165SZC02 以下は 0370MIC00 と同一の活動であることは明らかである。これは評価(s)が確定群(1)であるか、未確定(0)であるかによって注目度が異なっているためと考えられる。0370MIC00 の報告は 2010 年であり、0165SZC02 以下の報告は 0370MIC に含まれるべきものである。

表 II-5-1: IAUMDCSD における SZC と MIC の混乱。

				_				
Code	S	α	δ	V_g	λs	λ - λs	β	References
0165SZC00	1	304.80	-33.92	33.17	79.70	219.50	-13.94	1] Gartrell & Elford, 1975
0165SZC01	1	304.7	-32.8	38.6	80.5	218.89	-12.83	2] Brown et al., 2008
0165SZC02	1	319.3	-27.6	39.2	104	209.24	-11.26	3] Jenniskens et al., 2016
0165SZC04	1	320.4	-26.5	39.9	106.5	208.03	-10.51	5) Shiba, 2022
0370MIC00	0	320.3	-28.3	38	104	209.87	-12.20	1] Brown et al., 2010

図 II-5-1: CMOR の観測。

0165SZC01 と0370MIC00 はともに CMOR の観測であり、現在でも SZC と MIC は全く別の流星群であることが CMOR の画像で明確に示されて いる(図 II-5-1 左)。なお、本来の SZC、*As*=80 付近の活動は短期間で、し かもビデオ観測ではわずかの流星しか捉えられていない。恐らくは暗い流 星が多いのであろう。逆に MIC はビデオ観測では、はっきりと捉えられ ているが、CMOR の観測ではあまりはっきりしない(図 II-5-1 右)。

GNM では MIC の活動を SZC とし、SonotaCo ネットの J14 リストには 両方とも登場しない。

6. 0012KCG 周辺:0012KCG, AXD, 0073ZDR, 0197AUD

KCG とその周辺の流星群については混乱がある。まず、KCG はほぼ 7 年周期で活動し、平年ではほとんど その活動は見られないことに注意する必要がある。毎年、弱い活動を見せるのは KCG の数度西にある AXD (August xi Draconids:これは IAUMDCSD に該当するものが見られないために筆者が仮称している)である。 GMN の観測でも KCG が活動した 2021 年以外は KCG と判定されるものよりも AXD の方が多い。図 II-6-1 に ついて詳しくは後程説明するが、両方の図でそれぞれ見られる 2 つの輻射点グループのうち、左側が KCG、 右側が AXD である。現在の IAUMDCSD でも AXD との混同によって KCG の報告はまとまりがない。

図 II-6-1: KCG と AXD。a: (λ-λs, β) = (145, 75)を中心として、λs=120~170の期間に GMN で観測されたすべ ての輻射点(左)、b:左側の図の中で GMN が KCG または AUD と判定した輻射点。

次に混乱を招いているのは、ZDR と AUD についての IAUMDC における迷走である。現在は表 II-6-1 のように記載されている。しかし、IAUMDC の原型である Jenniskens の流星群表では少々異なる資料を取り上げている。この最初期の流星群表では、表 II-6-2 の L1-167 と S3-142 を ZDR の観測として取り上げ、S3-147 と S3-149 の両方を AUD としていた。

表 II-6-1: IAUMDCSD で ZDR または AUD として記載されている流星群。

Code	s	α	δ	V_g	λs	λ - λs	β	References
0073ZDR00	0	261.7	67.8	22.36	122	33.15	86.55	1] Molau & Rendtel, 2009
0197AUD00	1	272.45	64.91	17.3	141.90	160.51	88.06	1] Sekanina, 1976
0197AUD01	1	271.7	58.9	21.1	143	133.57	82.30	2] Jenniskens et al., 2016
0197AUD03	1			21.0	149.0			4) Shiba, 2022

ZDR は最初期の ZDR の範囲 (表 II-6-2 の L1-167 と S3-142) が曖昧である上に、現在の IAUMDCSD の ZDR はそれらとかけ離れている。後者は過去の写真観測においても、現代のビデオ観測においても全く存在を確認 できない。ところが、伝統的な Denning の流星群表に登場する ζ -Draconids と同定できる写真観測がある(表 II-6-2 の T1-110 と L1-207)。IAUMDCSD がこのいずれかを採用していたら、状況は違ったものになったと思われる。

表 II-6-2: ZDR と AUD の混乱。

Source	α	δ	V_g	λs	λ - λs	β	Shower
L1-167	260	30	18	135	120.6	52.9	θ-Herculids
S3-142	303.2	42.7	17	139.7	184.1	60.1	Gamma-Cygnids
T1-110	270.7	54.1	21.9	148.4	123.4	77.5	ζ-Drads
L1-207	269	59	24	149.5	116.6	82.4	ζ-Draconids
S3-147	271.3	65	23.6	140.8	148.7	88.4	August Draconids
S3-149	272.4	64.9	17.3	141.2	160.6	88.1	Phi-Draconids
Denning	260.5	63.3					ζ-Draconids

最初期の表で AUD とされている表 II-6-2 の S3-147 と S3-149 はいずれもハーバードの電波観測によるもの で、地心速度のわずかの違いだけで輻射点はほぼ同じである。AUD の名前の元となる S3-147(August Draconids)

を IAUMDSD が採用しなかった理由は不明である。また、上に掲げた現在の IAUMDC の AUD00(S3-149)と AUD01 とは輻射点が数度離れ、速度の差もあり、同定にはやや疑問が残る。

IAUMDC の混乱だけでなく、図 II-6-1 で見られるように、さらに輻射点分布の形状という問題がある。図 II-6-1 は(λ - λ s, β) = (145, 75)を中心として、 λ s=120~170 の期間に GMN で観測されたすべての輻射点を示したものである。2 つの輻射点分布がそれぞれ屈曲している様子が見られる。右側の図は GMN が KCG または AUD と判定している流星だけを抜き出したものである。表 II-6-3 は GMN が KCG と AUD をどのように表しているかを示したもので、GMN は KCG を 3 つ、AUD を 2 つに区分している。 λ smin と λ smax はそれぞれの期間の下限 と上限を示している。 λ snef はそれぞれの期間の代表値で、 λ - λ s、 β 、 V_g の値はそれに対応したものである。 $\Delta(\lambda$ - λ s、 $\Delta\beta$ 、 ΔV_g は太陽黄経に応じたそれぞれの変化量を示す。

表 II-6-3: GMN による KCG と AUD の定義。

Code	λs_{min}	λs_{ref}	λs_{max}	λ - λs	$\Delta(\lambda - \lambda s)$	β	$\Delta \beta$	V_g	ΔV_g
KCG_1	93.1	113.6	125	157.943	-0.21	46.628	0.846	18.511	0.039
KCG_2	125	140.1	150	162.943	0.733	70.573	0.634	22.312	0.202
KCG_3	150	154.7	167.1	187.379	3.3	78.47	0.219	25.638	0.264
AUD_1	130.7	142.7	148	144.446	-0.468	79.238	0.881	21.114	0.184
AUD_2	148	153.5	164.9	57.173	-2.675	81.706	-0.885	21.142	-0.199

この輻射点の屈曲については、GMN が KCG の活動開始としている λ s=93.1 以前にも、興味深いことに図 II-6-2 のように、輻射点の連なりが見られる。図 II-6-2 は(λ - λ s, β) = (160, 35)を中心として、 λ s=55~135 の期間の 輻射点分布を示したものである。図の中央上端の輻射点が KCG の初期出現を表している。輻射点の分布濃度 は低くなるが、さらに下がって黄道群(0456MPS, 0150SOP)にまで連なっているようにも見える。GMN のよう に 1 つの流星群に対して複数の定義を設定するのも一つの考え方ではあるが、他方ではそれらを分解して独 立した活動とするという考え方も成り立ちうる。本稿では GMN が提唱している KCG_1 と KCG_3 について は、今後の課題としておく。また、AUD_1 と AUD_2 はそれぞれ AXD と ZHR という 2 つの流星群に区分す る。この AXD と ZHR に区分することは前回の SonotaCo ネットによる流星群表、また、EDMOND のデータ による分析を踏襲したものである。ちなみに SonotaCo ネットの J14 リストでは AUD も ZDR も取り上げられ ていない。また、図 II-6-3 に示すように J5 リストと J14 リスト(KCG_ja)では KCG の定義が違っていることに も注意が必要である。

図 II-6-3: SonotaCo ネットの KCG の定義変化。

7. 0033NIA と 0215NPI

NIA は「みずがめt群」のことだが、NPI は Northern delta-Piscids だから「δうお北群」ということになろう か。本稿では NIA と NPI は統一されるべきものとしているが、IAUMDCSD を含めて 2 つを分けていることが 多い。この混乱の原因を説明する必要がある。

「みずがめι群」が注目されるようになったのは、Wright et al.の Harvard の写真観測を用いた研究による。彼 女等は検出した流星活動を McIntosh のみずがめι群と関連付けた。みずがめι北群(また南群)の活動は、ほぼ みずがめδ群と同一の7月下旬から8月上旬と考えられてきた。Wright 達が引用している Elleett & Roth による 初期の電波観測も7月下旬から8月上旬のものである。確かにWright 達の観測にもλs>145の範囲が含まれているが、「元祖みずがめれ群」とは区別されるべきものであろう。20世紀の観測でみずがめれ群と報告されているものを表 II-7-1 に示すが、上の3つが「元祖みずがめれ群」に対応する。下の3つは NPI を観測しているにもかかわらず、「元祖みずがめれ群」に引きずられて名付けられていると思われる。

表 II-7-1: いろいろなみずがめ」群

No.	α	δ	Vg	λ - λ s	β	e	q	i	ω	Ω	λs	Stream
LE-313	326.1	-3.4	39.0	208.8	9.7	0.940	0.100	28.9	328.8	118.3	118.3	Northern 1-Aquarids?
K1-91	321.7	-7.8	35.0	200.8	6.9	0.890	0.200	12.0	313.0	120.7	120.7	N ι-Aquariids
NI-61.7.11	326.9	-12.1	30.0	199.0	1.2	0.850	0.234	6.9	312.5	126.0	126.0	N.1-Aquarids?
S2-50	352.5	-0.8	28.2	200.6	2.2	0.823	0.242	3.2	313.5	152.2	152.2	Northern 1-Aquarids
S3-159	350.1	0.6	26.1	198.1	4.4	0.777	0.302	5.2	307.4	153.1	153.1	Northern 1-Aquarids
LI-78	354.6	1.3	31.0	193.5	3.3	0.830	0.326	4.0	299.7	162.1	162.1	Northern 1 Aquarids

IAUMDCSD に掲載されている NIA にもこの「元祖みずがめ」群」に影響された報告がある一方で、実際に は NPI の活動を指している報告が混在している。表 II-7-2 に IAUMDCSD に記載されている全ての NIA と NPI の報告を示す。

表 II-7-2: IAUMDCSD における NIA と NPI。

Code	S	α	δ	V_g	λs	λ - λs	β	備考	観測	References
0033NIA00	1	327.66	-5.88	31.2	147.70	180.11	6.76	*1		1] Cook, 1973
0033NIA01	-2	328	-4.7	27.6	145.1	183.44	7.75	*1		2] DMS 2001
0033NIA02	1	356.0	3.0	28.6	159.5	198.02	4.34	*1	R	3] Brown et al., 2008
0033NIA03	1	355.4	3.4	28.7	159	198.13	4.95	*1	R	4] Brown et al., 2010
0033NIA04	1	334.0	-8.3	27.19	142	190.89	2.30	*1	Т	5] Molau et al., 2012
0033NIA05	1	346.7	-1.2	31.3	148.0	199.30	4.14	*1	Т	6] Jenniskens et al., 2016
0033NIA07	1	2.3	4.9	29.7	166.9	197.16	3.58		Т	8) Shiba, 2022
0215NPI00	2	0.84	3.74	27.4	168.30	193.96	3.10	*2	R	1] Sekanina, 1973
0215NPI01	2	9.15	7.04	25.6	173.50	197.67	2.85	*3	R	2] Sekanina, 1976
0215NPI02	2	7.64	7.14	30.4	173.30	196.54	3.53	*4	Р	3] Porubcan & Gavajdova, 1994
0215NPI03	-7	9.2	7.7	31.2	174.4	197.08	3.43	*5		4] Jenniskens,2006
0215NPI04	2	10.2	8.6	28.0	176	196.75	3.87	*6	Т	5] Jenniskensetal., 2010
0298IAQ00	-2							*7		1] Jenniskens, 2006

*1: Member of 298/IAQ complex

*2; In Sekanina 1973, the shower name is Piscids (p. 257 & 260), member of 030/PSC

*3: In Sekanina 1976, the shower name is Piscids (Tab. VI, p. 285), Member of 030/PSC

*4: In Porubcan & Gavajdova 1994, the shower name is delta-Piscids, Member of 030/PSC

*5: No original reference, member of 30/PSC

*6: ? Encke complex, member of 30/PSC

*7: Group members: 33/NUA, 3/SIA; removed, empty record; NUA は NIA のタイプミス。

NIA00,01,04 はこの「元祖みずがめ1群」を意識してのものと考えられる。残りの NIA02,03,05,07 は NPI00~02 より後の報告であり、これらは本来、NPI に含められるべきものであろう。

NIA と NPI の扱いについて、GMN と SonotaCo ネットでも混乱があり、ともに別群としている。しかし、表 II-7-3 に示すように、本稿で NIA と NPI を統合した輻射点移動からの推算値(NIA+NPI で示す)は十分に両 者の輻射点を表しており、NIA と NPI は一つの活動として扱うべきであろう。

表 II-7-3: SonotaCo ネットの J14 リスト、GMN のリストと NIA と NPI を統一して得られた本稿の推算値との比較。

Code	Source	λs	λ - λs	β	α	δ
NIA	GMN	162.6	197.19	3.893		
	NIA+NPI	163.0	197.5	3.8	359.0	3.7
	SonotaCo	151.863434			350.535004	-2.489222
	NIA+NPI	152.0	199.6	3.9	350.8	0.2
NPI	GMN	183.6	191.771	3.655		
	SonotaCo	182.123184			12.662714	9.177
	NIA+NPI	183.0	193.7	3.8	14.0	10.1

8. オリオン群の尻尾

図 II-8-1:「オリオン群の尻尾」(λ-λs, β) = (254, -17), λs = 130~240。 a: GMN(左)、b: IAUMDCSD(右)。 (λ-λs, β) = (254, -17)を中心としてλs = 130~240の期間に観測された輻射点分布を図 II-8-1 に示す。左は GMN、 右は IAUMDCSD の流星群の分布である。表 II-8-1 に図 II-8-1b の分布図にある IAUMDCSD の輻射点を示す。

表 II-8-1:「	オリオ	ン群の周	え尾」	の領域にある IA	UMDC	SD の車	齲射点	(図 II-8-1b に描か	れてい	いるもの	の)。
Code	λs	x	у	Code	λs	x	У	Code	λs	x	у
0466AOC01	136.8	3.47	6.69	1087OOE00	167.3	4.69	-5.25	0718XGM00	206	3.10	6.40
0191ERI02	137	-5.59	-10.37	0337NUE00	167.9	-4.92	-3.74	1198XRO00	207.1	8.30	9.11
0535THC00	137	12.98	-1.86	0337NUE02	168.6	-4.51	-4.07	0008ORI03	207.5	6.89	9.04
0738RER00	137	-9.48	-3.36	1142SNT00	171.2	4.47	1.47	0008ORI04	207.9	6.52	9.07
0191ERI00	137.5	-5.97	-11.75	0595TTT00	175	12.50	13.33	0008ORI05	208	6.60	8.77
0191ERI01	137.6	-5.87	-10.45	0430POR00	178.4	-2.09	2.80	0008ORI01	208.6	7.33	9.45
0466AOC02	138	4.24	5.46	0896OTA00	179.3	-13.37	11.14	0008ORI00	208.7	7.41	9.43
0466AOC00	138.5	3.74	5.53	0211AOR00	182.8	-9.51	2.38	00080RI06	209	7.24	9.27
0194UCE00	145.7	4.22	-0.17	0876ROR00	185.3	1.15	-1.87	0008ORI02	209.8	7.68	9.67
0193ZAR00	146.7	-10.39	12.73	0479SOO00	185.6	0.34	6.06	0232BCN00	214	-4.63	-10.97
0873OMI00	152.8	10.71	-4.18	0479SOO01	185.7	-0.62	4.49	0558TSM00	221	-5.70	-9.66
<u>0552PSO01</u>	159	-14.17	-7.94	0225SOR01	187	-6.20	-6.04	0243ZCN00	225	-0.64	10.94
0337NUE03	163	-3.16	0.72	<u>0479SOO02</u>	187	0.04	6.35	<u>0558TSM01</u>	227	-4.06	-8.46
0583TTA00	164	4.19	-0.44	0225SOR00	191.7	0.14	-9.38	0245NHD00	234.8	-5.32	-6.81
0337NUE01	165	-13.36	-5.80	0226ZTA01	196	3.79	8.28	0246AMO00	239	13.48	-3.43
0552PSO00	166.3	-13.42	-7.60	1090EOR00	196.5	12.29	-7.69	0246AMO01	239.3	13.44	-3.47
1088SEE00	166.5	13.51	-6.67	0227OMO00	206	-2.81	-7.33	1196ZCM00	239.8	13.64	-3.28

Jenniskens が IAUMDCSD で"The Halley Complex"としているものに下線を付した。この表にはないが、0719LGM00 ($\lambda s = 232, \lambda - \lambda s = 234.06, \beta = -5.01$) もこのグループに含まれている。0337NUE03 は IAUMDCSD に

図 II-8-2:3本目の「オリオン群の尻尾?」。0583TTA00 を基準に輻射点移動を計算した輻射点分布図(左)と活動曲線(右)。

は記されていないが、「オリオン群の尻 尾」としては含まれている。RER と PSO は枝分かれした尻尾のように見える。 どれを独立した活動とみるかについ ては一般的な基準があるわけではない ので、本稿では 10 段階の格付けで 8 以 上となったものとして ORI の他に、ERI、 PSO、NUE を取り上げている。

「オリオン群の尻尾」の右側に弱い輻 射点の帯が見える。0194UCE00、 0583TTA00、1142SNT00がこれに対応し ている。TTA を基準に輻射点移動を考慮した輻射点分布と活動曲線を描くと図 II-8-2 のようになる。輻射点分 布は一つの流星群のように見えるが、活動曲線は複雑である。この輻射点の帯も起源に何らかの共通点はある としても、「オリオン群の尻尾」と同様に単一の流星群として認めるには議論が必要だろう。しかし、「オリオ ン群の尻尾」の他にもこのような輻射点の帯が存在することは興味深い。「4.0372PPS の周辺」、「6.0012KCG 周辺:0012KCG, AXD, 0073ZDR, 0197AUD」、「12.03380ER と 0490DGE」も参照されたい。

9. 0081SLY00 と 0081SLY01

図 II-9-1: 2 つの SLY。中心は(*λ-λs*, β) = (287, 29)で*λs* = 167~187。a: GMN, b: IAUMDCSD と写真観測。

0081SLY は同一の観測者(Molau & Rendtel, 2009)が一つの活動としたことが混乱の始めである。図 II-9-1a で 6 度の円を挟んで対称に左上が SLY00、右下の広がった輻射点の集まりが SLY01 である。位置的にも 10 度以 上離れているだけでなく、太陽黄経では 20 度ほどの違いがある。このため、SLY は未確定とされており、そ のことにより、IAUMDCSD では 2 つの SLY それぞれに 0705UYL00 = SLY00、0424SOL00 = SLY01 という同じ 活動に対して別の番号、名称が与えられることになった。0425PSA01 と 0613TLY00 も SLY01 の活動に含まれ る可能性がある。

Jenniskens の大著では 0081SLY としては SLY01 に対応する Lindblad の"Lyncids"が採用されている。恐らく Molau らは、この観測に対応するものとして SLY01 を検出し、もう一つの候補として SLY00 を見出したと考

図 II-10-1: TCA と OML。

えられる。図 II-9-1b で△は IAUMDCSD に掲載され ていない流星群であり、塗りつぶした△が"Lyncids" である。また、写真観測の○のうち、塗りつぶした 2 つの丸を Lidblad は"Lyncids"に属するとしている。

SonotaCo ネットの J14 リストでは UYL が取り上げ られ、SLY01 は取り上げられていない。GMN では SLY01 を SOL として扱っている。

ここでは SLY00 を SLY_0、SLY01 を SLY_1 と称する ことにする。

10. 0480TCAと0481OML

この場合は SLY とは逆に同一の観測者(Rudawska & Jenniskens, 2014)が 0480TCA と 0481OML を 2 つの活動に分けたことによって混乱が生じた。TCA も OML も SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。図 II-10-1 は(λ - λ s, β) = (283, 14)を中心に λ s = 192~232 の期間の輻射点分布を示すが、これに見られるように 2 つの活動は連続したものだということがわかる。なお、右下の輻射点は、しし群の初期活動によるものである。

IAUMDCSD では双方ともに未確定としたことで更に 1114SGC00 = TCA という別の番号、名称が加えられた。 GMN では OML という名称は用いず、 λs = 178.5~221.9 の活動を TCA としている。SonotaCo ネットの J14 リ ストでは TCA(λs = 200.6~208.1)と OML(λs = 216.8~221.5)がともに取り上げられている。

11.0002STA と 0017NTA の細分化 STA

IAUMDCSD では "Remarks"の欄で "#2/STA component"という註を次の7つの報告につけている: 0286FTA00、0625LTA00、0626LCT00、0627NPS00、0628STS00、0636MTA00、0637FTR00。これに加えて、0624XAR00 も STA の一部と考えられる。SonotaCo ネットの J14 リストでは独立した活動としては扱っておらず、*λs*=181.57~267.40 という長い活動期間を設定している。一方で GMN は上記の 8 つの活動を STA とは独立した活動として扱っている一方で、それに重ねて STA の活動を*λs*=190~230 の期間としている (図 II-11-2a 参照)。

たびたび述べているが、STA は 2 つの構造に分け て考えることが適切である。Whipple が 10 月のおひ 図 II-11-1: $\lambda s = 180~205$ 、 $\beta = -8~-2$ の範囲の輻射点。 つじ群と 11 月のおうし群に分けていたように、眼視観測でも 10 月の極大後、11 月に主極大を迎えることが 知られていた。図 II-11-1 は $\lambda s = 185~245$ の期間に $\lambda - \lambda s = 180~205$ 、 $\beta = -8~-2$ の範囲の輻射点を示したものであ る。前回と同様に直線で示した集団を STA_SE、破線で示したものを STA_SF と呼ぶ。STA_SE が 10 月のおひ つじ群、STA_SF が 11 月のおうし群にあたる。Asher が指摘している活動が強化される年に STA_SF は顕著な 活動を示すが、STA_SE は変化を見せない。この 2 つの活動は、光度比や発光点の高さでも明らかな違いを見 せるので、区別して考えねばならない。 NTA

STA と同様に NTA でも"#17/NTA component"という註がついた報告が 8 つある: 0629ATS00、0630TAR00、0631DAT00、0632NET00、0633PTS00、0634TAT00、0635ATU00、0726DEG00。この場合でも、SonotaCo ネットの J14 リストでは*As*=199.69~276.42 の活動をひとまとめにしているが、GMN では 8 つの活動を独立して扱う一方で、それに重ねて NTA の活動を*As*=217~241 としている(図 II-11-2b 参照)。

図 II-11-2: GMN による出現数の変化。a: STA(左)、b: NTA(右)。それぞれの活動を細分化した影響で STA と NTA の活動を表せていないことが分かる。

1 2. 03380ER & 0490DGE

OER は既に確定群とされているが、OER03 に" Continue to (#490 DGE) December delta Eridanids."という Remarks が付けられている。確かにそのように見えるが、実はその先に連なるとみられる流星活動が捉えられ ている。図 II-12-1a は(λ - λ s, β) = (185, -37)を中心として、 λ s = 195~305 の期間の輻射点分布を示したものであ る。これほどの長期間ではあるが、弧状に輻射点が連なっている様子が分かる。図の上端の輻射点密集部が STA であり、ここからぶら下がるように活動を始めるのが OER である。

図 II-12-1b は、この弧に沿って輻射点移動があったと仮定した場合に輻射点分布を集積したものである。この図の範囲に存在する IAUMDCSD の流星群は表 II-12-1 に示すように多数存在する。このうち、中心から 3 度以内となるものは Code を赤字で示した。DGE00 が外れる代わりに 0709LCM という活動が含まれている。なお、DGE 以降の活動を GMN は 0308PIP としているが、0300ZPU00~0318MVE00 の記載は断片的な眼視観測の報告を Jenniskens が独自の視点でまとめたものであり、0308PIP を DGE 以降の活動全体に延長して考えるのは無理があろう。

図 II-12-1: OER から伸びる輻射点弧。a: (λ-λs, β) = (185, -37)を中心としたもの(左)、b: 輻射点弧に沿ってλs = 195~305の輻射点を集積したもの(右)。

表 II-12-1:図 II-12-1b の範囲に入る IAUMDCSD の輻射点。

λs	λ - λs	β	V_g	距離	方位	x	У
196	195.6	-4.2	28.2	5.89	7	-0.69	5.85
196	196.8	-4.2	29	6.14	18	-1.86	5.85
196.5	195.2	-4.3	27.92	6.07	3	-0.37	6.06
198.5	195.8	-2.8	25.6	8.94	9	-1.46	8.82
202.1	194.4	-13.2	32.7	0.96	79	-0.94	0.19
202.4	195.2	-4.6	28.6	9.10	12	-1.86	8.91
205	195.1	-4.6	28.5	10.18	13	-2.32	9.92
206.7	199.2	-24.5	3.3	11.50	147	-6.34	-9.60
230.5	184.6	-20.8	28	1.50	190	0.25	-1.48
232	185.7	-20.0	28.5	1.33	105	-1.28	-0.33
234.7	183.5	-21.8	26.9	1.33	175	-0.11	-1.32
241.88	180.7	-24.5	26.06	1.42	183	0.08	-1.42
249.3	176.1	-35.3	23.8	8.67	192	1.79	-8.48
254	176.8	-29.9	24.7	0.10	178	0.00	-0.10
273.3	175.1	-45.9	25.1	0.47	105	-0.46	-0.12
286	176.4	-54.6	25.4	2.46	329	1.27	2.11
290.7	198.8	-63.3	33	8.68	120	-7.51	-4.35
	λs 196 196.5 198.5 202.1 202.4 205 206.7 230.5 232 234.7 241.88 249.3 254 273.3 286 290.7	$\begin{array}{cccc} \lambda s & \lambda - \lambda s \\ 196 & 195.6 \\ 196 & 196.8 \\ 196.5 & 195.2 \\ 198.5 & 195.8 \\ 202.1 & 194.4 \\ 202.4 & 195.2 \\ 205 & 195.1 \\ 206.7 & 199.2 \\ 230.5 & 184.6 \\ 232 & 185.7 \\ 234.7 & 183.5 \\ 241.88 & 180.7 \\ 249.3 & 176.1 \\ 254 & 176.8 \\ 273.3 & 175.1 \\ 286 & 176.4 \\ 290.7 & 198.8 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	λs $\lambda - \lambda s$ β V_g 距離196195.6-4.228.25.89196196.8-4.2296.14196.5195.2-4.327.926.07198.5195.8-2.825.68.94202.1194.4-13.232.70.96202.4195.2-4.628.69.10205195.1-4.628.510.18206.7199.2-24.53.311.50230.5184.6-20.8281.50232185.7-20.028.51.33234.7183.5-21.826.91.33241.88180.7-24.526.061.42249.3176.1-35.323.88.67254176.8-29.924.70.10273.3175.1-45.925.10.47286176.4-54.625.42.46290.7198.8-63.3338.68	λs $\lambda - \lambda s$ β V_g 距離方位196195.6-4.228.25.897196196.8-4.2296.1418196.5195.2-4.327.926.073198.5195.8-2.825.68.949202.1194.4-13.232.70.9679202.4195.2-4.628.69.1012205195.1-4.628.510.1813206.7199.2-24.53.311.50147230.5184.6-20.8281.50190232185.7-20.028.51.33105234.7183.5-21.826.91.33175241.88180.7-24.526.061.42183249.3176.1-35.323.88.67192254176.8-29.924.70.10178273.3175.1-45.925.10.47105286176.4-54.625.42.46329290.7198.8-63.3338.68120	λs $\lambda - \lambda s$ β V_g 距離方位 x 196195.6-4.228.25.897-0.69196196.8-4.2296.1418-1.86196.5195.2-4.327.926.073-0.37198.5195.8-2.825.68.949-1.46202.1194.4-13.232.70.9679-0.94202.4195.2-4.628.69.1012-1.86205195.1-4.628.510.1813-2.32206.7199.2-24.53.311.50147-6.34230.5184.6-20.8281.501900.25232185.7-20.028.51.33105-1.28234.7183.5-21.826.91.33175-0.11241.88180.7-24.526.061.421830.08249.3176.1-35.323.88.671921.79254176.8-29.924.70.101780.00273.3175.1-45.925.10.47105-0.46286176.4-54.625.42.463291.27290.7198.8-63.3338.68120-7.51

同様に弧に沿って、流星数を数 えて活動曲線を描くと図 II-12-2 となる。中心から3度以内の流星 数 Nr<=3 を見ると*\s* = 230 付近 で活動は極大となるように見え るが、DR3 10 でみるとな = 295 付近が最大となる。輻射点の位置 がかなり南に移動しており、北半 球から捉えられる流星数は減少 することを考えると、単純に流星 数でみるのは無理がある。他方、 この期間には STA のみならず、 MON や GEM という強力な活動 があり、DR の変化を見るには注 意が必要である。*\s* < 220 で DR3 10 が減少しているのは STA の影響を受けているためであり、 DR3 20 を用いると GEM の影響

が*As*=260 付近で強く出てしまう。このような制約を考えると、この弧状に連続してみえる活動は単一のかつ どうとも、複数の活動の重なりとも考えられる。弧状の活動を一体として軌道の変化を計算すると、近日点方 向と軌道半長径がかなり一定に保たれているようにもみえる。果たして、分割するとしていくつに分かれるの か、また、一体として考えることができるのかは今後の課題である。先に触れたように、現在では輻射点が南

に深く下がった活動後期の様子が不明確なので、今後の南半球での GMN の活動が期待される。

GMN は OER と DGE を一体として扱っているが、 SonotaCo ネットの J14 リストは OER のみを取り上 げ、DGE については触れられていない。GMN は活動 を $\lambda s = 260.5$ まで延長して考えているが、この時期に は輻射点分布が弧状に南下していく部分に入ってい る。

図 II-12-2: 図 II-12-1b で3度以内に入る流星数変化。

図 II-13-1:2つの TPY。

14.0096NCCと0097SCC

0340TPYには3つの報告がある。最初のものは2009 年の SonotaCo ネットによるもので、後の2つはいず れも CAMS の第一報のものである。(λ - λ s, β) = (260, -35)を中心として、*λs* = 240~270の期間の輻射点分布 を図 II-13-1 に示す。2 つの TPY のうち、上が TPY01 と 02、下が TPY00 である。位置の違いはそれほど大 きくないものの、太陽黄経で15度ほども離れている にも関わらず、IAUMDC で CAMS の報告を TPY01 と して受け付けたために混乱が始まった。TPY00 と TPY01 の違いのため未確認とされたため、新たにそ れぞれを新しい流星群とする報告が登録されたので ある。SonotaCo ネットの J14 リストでは TPY00 はそ のままTPYでTPY01と02の組をDMHとしている。 ところが、GMN では TPY00 を DTP とし、TPY01 と 02 の組を TPY としている。TPY00 の報告は TPY01 と 02 の組より、また、DTP よりも先であるので SonotaCo ネットのように TPY00 を TPY とすること が妥当である。なお、前回ではこの2 つの活動を TPY 0 と TPY 3 として区別していたが、TPY03 が IAUMDCSD から削除されたので、TPY 0 はそのまま、 TPY 3 としていたものを今回は TPY 1 と称する。

図 II-14-1:おうし群から、かに群(南北)にかけて(*λ-λs*)=(190,0)を中心にした輻射点分布。

輻射点分布は、STA と NTA の輻射点が図上では右に移動していく一方で、中心付近に輻射点の集合らしい ものが残っている様子を示している。このような活動を一括りにして NCC また SCC と呼ぶのか、いくつかに 区分するのか、はたまた、散在流星或いは ANT と切り捨てるのか議論は途中である。とても、「確定群」と呼 べるものではない。

IAUMDCSD で NCC と SCC とされているものを表 II-14-1 に示す。備考欄は賑やかであり、この活動がいかようにも解釈できることを示している。1960年代から、研究者によっていろいろな解釈がなされていることが分かる (Terentjeva の最も重要な Терентьева, А.К., 1966, 'Исследование Метеоров', No.1, 62-132.が IAUMDCSD で引用されないのは資料の偏りを感じさせる)。

いずれにせよ、(*λ-λs*)=(190,0)は ANT の中心にあたり、NCC や SCC とは何を指すのか判断が分かれるところである。先の流星群表では NCC と SCC を掲載したが、本稿では除外している。SonotaCo ネットの J14 リストでも NCC と SCC は取り上げられていない。他方、GMN は両方とも掲載している。

表 II-14-1: IAUMDCSD で NCC、SCC とされている流星群。

		-	•		· - •				
Code	α	δ	V_g	λs	λ - λs	β	備考	観測	References
0096NCC00	130	20	25.67	297	190.17	1.57	*1	V	1] Arlt R.,1995
0096NCC01	134.19	14.20	26.7	300.20	192.38	-2.94	*2	R	2] Nilsson, 1964
0096NCC02	126.72	19.92	28	297.10	187.11	0.73	*3	Р	3] Lindblad, 1971
0096NCC03	124.83	20.92	25.8	292.90	189.35	1.30	*4	R	4] Sekanina, 1973
0096NCC04	130.52	19.71	26.4	297.10	190.62	1.42	*5	R	5] Sekanina, 1976
0096NCC05	131.4	17.6	27.73	299	190.08	-0.40	*6	V	6] Molau et al., 2013
0096NCC06	127.6	21.5	27.2	296	188.63	2.47	*7	Т	7] Jenniskensetal., 2016
0096NCC08	128.6	20.4	28.2	296.9	188.90	1.63		Т	9) Shiba, 2022.
0097SCC00	131.68	11.91	24.36	305.70	185.15	-5.82	*8	Р	1] Terentjeva, 1989
0097SCC01	118.87	7.63	24.0	297.00	182.41	-12.91	*9	R	2] Nilsson, 1964
0097SCC02	131.5	10.6	26.43	298	193.02	-7.13	*10	Т	3]Molau & Rendtel, 2009
0097SCC03	125.0	14.4	27.0	296	187.90	-5.02	*11	Т	4] Jenniskens et al., 2016
0097SCC05	117.5	16.1	27.9	287.1	189.34	-4.85		Т	6) Shiba, 2022.

*1: In Arlt 1995 the shower name is delta-Cancrids, member of delta-Cancsrids group (#95 in 2006 PJ)

*2: In Nilsson 1964, Tab 4 radiant 61.1.1, member of delta-Cancrids group (#95 in 2006 PJ)

*3: member of 96

*4: In Sekanina 1973, the shower name is delta-Cancrids (p. 255 & 258) member of delta-Cancrids group (#95 in PJ 2006)

*5: In Sekanina 1976, the shower name is delta-Cancrids (Tab. VI, p. 274), member of delta-Cancrids group (#95 in PJ 2006)

*6: member of 95/DCA group

*7: ecliptic antihelion source, member of delta-Cancrids group (#95 in PJ2006)

*8: In Terentjeva 1989 in Tab.1 alpha-Cnc(a), member of delta-Cancrids group (#95 in PJ2006)

*9: In Nilsson 1964, Tab 4 radiant 61.1.2,, member of delta-Cancrids group (#95 in PJ2006)

*10: ecliptic antihelion source, twin of 204/DXL, member of delta-Cancrids group (#95 in PJ2006)

*11: ecliptic antihelion source, twin of 204/DXL, member of delta-Cancrids group (#95 in PJ2006)

III. 輻射点分布図と活動曲線

「I. 調査方法及び調査結果の概要」の表 I-4~7 に掲載した 118 の流星群について、輻射点分布図と活動曲線を示す。

Code	λs	Code	λs	Code	λs	Code	λs
BCO	13	MIC	101.3	OCT	192.55	EHY	256.2
ZCY 0	16	TCS	104.6	SAN	196.8	PUV	256.5
DHE	19.6	CAN	105	XIE	198.2	MON	258.1
AED	20	JPE	109.6	STA SE	201.5	GEM	261.85
<u>PSR</u>	24.7	ZCS	113.6	<u>OCU</u>	202.5	XVI	262.8
AVB	25	JXA	115	EGE	203.7	DAB	263.1
<u>ZCY 1</u>	31.5	XCS	116.3	LMI	209.2	<u>TPY 1</u>	264.3
LYR	32.3	<u>PPS 1</u>	117.5	TCA	209.5	COM	267.5
HVI	39	GDR	125.5	<u>ORI</u>	209.5	URS	270.65
ARC	39.5	CAP	126.9	<u>LUM</u>	214.8	DSV	271.5
BAQ	44	SDA	126.9	SLD	221.5	<u>KVE</u>	274.9
ETA	44.3	<u>ERI</u>	132.3	STA SF	222.2	<u>JLE</u>	281.6
GAQ	48	AXC	135.5	<u>KUM</u>	222.8	QUA	283.25
PCY	49.5	PER	140.5	<u>OER</u>	223	AHY	283.8
ELY	50.2	<u>KCG</u>	141.5	AND	224.5	<u>OLE</u>	288.3
MBC	55	ADC	143.65	<u>RPU</u>	226.2	<u>XCB</u>	294.8
TAH	69.45	AXD	147.2	NTA	226.5	<u>XUM</u>	298.6
PAN	72	<u>NDA</u>	149	<u>LEO</u>	235.4	<u>GUM</u>	299.8
JMC	72	ZDR	153.2	ACA	239.5	ACB	307.5
ARI	79.5	AGC	155.4	AMO	239.6	AAN	312.5
<u>JEC</u>	82.6	AUR	158.4	<u>NSU</u>	241.7	FED	314.84
JRC	84	<u>PSO</u>	160.4	NOO	246.1	<u>FHY</u>	325.4
<u>SSG</u>	87	<u>OMG</u>	163.2	ORS	246.2	<u>TTR</u>	332.1
JBO	90.3	<u>NUE</u>	165.5	NAC	246.5	<u>DNO</u>	334.2
DPI	91.2	<u>SPE</u>	166.9	TPY_0	249.4	<u>TSB</u>	343.7
JEO	92	<u>NPI</u>	167.2	DKD	251	<u>XHE</u>	351.9
JIP	94.1	<u>SLY 0</u>	169.5	<u>PSU</u>	251.5	<u>EVI</u>	358
FPE	95.8	CCY	173.4	DAD	253.5	EOP	358.2
PPS_0	98.5	<u>DSX</u>	188.5	HYD	255.4		
NZC	101	<u>SLY_1</u>	191.5	DRV	255.6		

輻射点分布図は回帰分析の結果による輻射点移動を補正したもので、輻射点の形状および広がりを示す。 活動曲線はその輻射点分布図の中心から3度以内に入る流星を基にしたものである。「I. 調査方法及び調査 結果の概要」のオリオン群の例で示したように、GMNのデータは2022年の観測条件に強く影響されるため、 流星数そのものを取り上げることはできるだけ避けている。また、周囲で活動する別の流星群の影響を受けな いように使用する DR は適宜変更している。どの DR または流星数そのものを用いたかは活動曲線の種類とし て図中に示した。基本的には太陽黄経で1度毎に中心から3度以内の流星と、例えば15~20度以内の流星のそ れぞれの面積を考慮した比(DR3_20のように表記)を太陽黄経で0.1度ずつの移動平均としてグラフ化してい る。出現数が少ない場合、または、活動が不規則な場合には太陽黄経で3度毎の流星数から比を求め、太陽黄 経で1度ずつの移動平均をdr3_20のように表記している。

それぞれの流星群について簡単な説明を加えたが、IAUMDCSDの流星群を分割したり、統合したりした場合等で詳しい説明が必要なものは「II.注意が必要な流星群」として別に取り上げている。

前回は取り上げていない群で、SonotaCoネットのJ14リストにも載っていない。IAUMDC には CAMS の観測 が1つ載せられているだけである。得られている流星数も多くなく、輻射点も拡散し、極大も不明確であり、 今回取り上げたものの中で下限に近い。

0040ZCY と 0348ARC については別稿「注意が必要な流星群」の中で詳しく述べているが、上に示した輻射点 分布、活動曲線に見られるように散在流星の活動の盛り上がりと流星群の活動として認められるものとの境 界域にある。ここでは活動曲線から ZCY を*ls*=15 付近の ZCY_0 と*ls*=30 付近の ZCY_1 とに分けている。いず れも前回は取り上げていない活動で、SonotaCo ネットの J14 リストにも載っていない。

CAMS の第二報で取り上げられたものである。DHE は前回取り上げていない活動で、SonotaCo ネットの J14 リストにも載っていない。活動曲線に見られるように出現期間が短く、GMN の観測でも捉えられた流星数が 少ないものの一つで、極大に当たらない限り検出は難しいであろう。

0450AED: April epsilon-Delphinids $\lambda s = 20, \lambda - \lambda s = 293.1, \beta = 30.1, \alpha = 307.2, \delta = 12.0, V_g = 60.6$

SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。この群は前回も取り上げ、SonotaCo ネットの J14 リストにも掲載されている。決して、出現数が多いわけではないが、輻射点分布図が示すように 周囲から際立ち、また、活動曲線もすっきりしている。

前回取り上げた KSE03 は現在の IAUMDCSD では削除されている。「II.注意が必要な流星群」で KSE と PSR の関係について詳しく述べており、KSE03 についてはそちらの方を参照されたい。

AVB という名前の元となった、0021AVB00、0021AVB01、0021AVB02 とは異なる活動で、0021AVB03、 0021AVB04、0021AVB06 および 0136SLE02 から構成されている。

ZCY と ARC については「II.注意が必要な流星群」で詳しく述べているが、ここで ZCY_1 とした活動は&=31.5 にかなりはっきりした極大を示している。二段に示した活動曲線の下のものは GMN がまとめたもので、ZCY の活動期間を&=1.6~33.9 としているが、本稿で推定した極大付近の活動が盛んである様子が見られる。

LYR の活動期間について、かつてはかなり長く考えられていたが、SonotaCo ネットでは*ls*=27.60~35.86、GMN でも*ls*=30~34 とかなり短く設定している。活動曲線で尖塔の基壇部のような構造が見られるが、これは前回の SonotaCo ネットの結果とも共通している。

0343HVI01 は輻射点の位置も太陽黄経の値も他とはかなり異なっており、HVI の観測とは認められない。また、HVI は年により活動が大きく変化するので、GMN による観測はほぼ 2020 年のものに限られている。

0348ARC: April rho-Cygnids $\lambda s = 39.5$, $\lambda - \lambda s = 312.7$, $\beta = 56.5$, $\alpha = 323.8$, $\delta = 47.3$, $V_g = 41.3$

ARCはZCYの活動域に隣接しており、*ks*=30付近の活動はZCYの混入によるものと推定される。ARCとZCYの関係については「注意が必要な流星群」を参照されたい。活動曲線はすっきりしないが、輻射点移動は明瞭である。前回は取り上げていない群で、SonotaCoネットのJ14リストにもない。

クロアチアと SonotaCo ネットの観測を合わせて検出された活動である。輻射点はよく集中しているが、出現 数が少ないので GMN のリストにはあるが、SonotaCo ネットの J14 リストにはない。前回は取り上げていない 群である。

輻射点はよく集中している。活動曲線は対称ではなく、極大後の活動期間は長い。後期の活動は、SonotaCo ネ ットの J14 リストでは*As* = 65.48 まで、また、GMN でも*As* = 66 としている。しかし、GMN の流星リストでは As>95のものでも ETA と判定されている流星が存在する。詳しくは「注意が必要な流星群」の中で触れている が、PPSにまで連なる流星活動があるのかもしれない。

これはクロアチアと SonotaCo ネットの観測を合わせて、母天体捜索を行った際に見出されたもので、 C/1853G1(Schweizer)との関連が指摘されている。活動期間を GMN では $\lambda s = 44.6$ ~65 としているが、SonotaCo ネットの J14 リストでは $\lambda s = 51.04$ ~52.44 と短く、しかも、上の活動曲線では後期にあたる時期としている。 前回は取り上げていない群である。

CAMSの第二報で登場するが、IAUMDCSDで他の報告はない。輻射点分布図で右下の活動は0145ELYで、10度ほどしか離れていない。輻射点もやや拡散し、極大も不明瞭である。SonotaCoネットのJ14リストにも掲載されておらず、前回は取り上げていない群である。

現在の IAUMDCSD では SonotaCo ネットの観測が最初のように見えるが、彗星の出現間もなくから存在は知 られていた。筆者も 1985 年の流星会議で C/1983 H1 (IRAS-Araki-Alcock)に関連する流星群として発表したこ とがある。少し以前の IAUMDCSD では Jenniskens の 2006 年の大著が最初の報告とされていた。IAUMDCSD の改定が行われても、以前の版を保存して置いて検証する必要が生じる場合がある。

これもクロアチアと SonotaCo ネットの観測を合わせて検出された流星群であるが、SonotaCo ネットの J14 リ ストでは2s = 53.72~54.38の極大付近の活動しか認めていない。観測された流星数は少ないものの、輻射点も 活動曲線も明瞭である。前回は取り上げていない群である。

ここに示すデータは 2022 年の突発出現についてのものである。GMN の観測において、2019~21 年では輻射点 分布図の 3 度以内に入る流星は観測されていない。詳しくは「注意が必要な流星群」に記したのでそちらを参 照されたい。前回は取り上げておらず、SonotaCo ネットの J14 リストにもない。GMN は IAUMDCSD の TAH ではなく、この 2022 年の観測値を TAH として掲載している。

0860PAN: psi-Andromedids $\lambda s = 72$, $\lambda - \lambda s = 307.1$, $\beta = 43.6$, $\alpha = 355.3$, $\delta = 46.6$, $V_g = 50.4$

CAMS の観測の第二報で初めて検出されたもので、まだ IAUMDCSD に他の報告はない。極大は短く、観測された流星数は少ないが、輻射点はよくまとまっている。前回は取り上げていない群である。

CMOR2 の電波観測で最初に検出された流星群だが、ビデオでも複数の報告がある。輻射点は拡散し、活動曲線も明瞭ではない。前回は取り上げていない群であり、SonotaCoネットのJ14 リストにもない。

0171ARI: Daytime Arietids $\lambda s = 79.5, \lambda - \lambda s = 330.6, \beta = 7.8, \alpha = 45.3, \delta = 25.2, V_g = 40.8$

IAUMDCSD の最初は Sekanina の電波観測であるが、電波観測の黎明期から知られており、Lovell の電波観測 はよく知られている。太陽から比較的離れているので、北半球の眼視観測者にも捉えられている。しかし、ビ デオ観測でも得られる流星数は多くないので、活動曲線ははっきりしない。

SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。前回は取り上げていないが、輻射点 も活動曲線も明瞭である。極大の幅が狭いので、年により得られる流星数に差が出やすい。

0510JRC: June rho-Cygnids $\lambda s = 84$, $\lambda - \lambda s = 262.2$, $\beta = 55.4$, $\alpha = 320.7$, $\delta = 44.5$, $V_g = 49.7$

クロアチアと SonotaCo ネットの観測を合わせて検出された流星群である。輻射点分布の右下に見えているのが、0458JEC である。活動期間の短い群であり、前回は取り上げていない。

さそり~いて座は眼視観測によっても、黄道型流星群の活動域とされており、写真観測によっても様々な流星 群が提唱されてきた。輻射点分布図の上半分は ANT の領域である。SSG はその中でも輻射点分布からも活動 曲線からも明瞭に ANT の活動とは区別できる。0069SSG00 は-3 等よりも明るい写真流星から求められた活動 であり、上の輻射点分布図では中心から半径 3 度の円よりやや外側の右上で ANT に近い。前回は取り上げて おらず、SonotaCo ネットの J14 リストにも掲載されていない。

7P/Pons-Winnecke に関連する流星群としてよく知られているが、平年ではほぼ散在流星の活動に埋もれて検出 は不可能である。GMN でも 2022 年の観測がなければ、未確認になったはずである。それ以前は 1998 年にヨ ーロッパの火球ネットで撮影されたものが唯一信頼できる軌道であった(0170JBO00 の電波観測は信頼性に 欠ける)。それ以降も 2010 年、2016 年と 6 年おきの観測が IAUMDCSD に掲載されている。SonotaCo ネット の J14 リストにもなく、前回は取り上げていない。

IMOのビデオネットで検出された群である。GMN での観測流星数も少ないが、輻射点分布も活動曲線も明瞭である。前回は取り上げておらず、また、SonotaCoネットのJ14 リストにもない。

SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。しかし、この 0459JEO00 は輻射点分 布図で半径 6 度の円の外で左上に位置し、 *λs* = 84.1 という数字も活動曲線からみて代表値とは言い難い。前回 は取り上げていない。

SonotaCo ネットのデータを用いてイギリスの人が 4 つの活動を指摘したうちの一つである。輻射点がよく集中しており、活動曲線も鋭く明瞭である。

CAMS の第二報で登場した群である。GMN で得られている流星数は少ないものの、輻射点もよくまとまり、活動曲線も明瞭である。SonotaCo ネットの J14 リストにもなく、前回は取り上げていない。

CMOR2 の電波観測によって検出された群である。PPS の周辺の流星活動が複雑なので、詳細は「注意が必要 な流星群」に譲る。SonotaCo ネットのJ14 リストでは活動期間を*λs* = 91.68~98.20 としているが、GMN では*λs* = 89~132.7 とし、実際にはさらに両側に延長して判定している。J14 リストは PPS の活動の極大前の部分しか 扱っていないことになり、GMN は末期出現を長くとり過ぎているように思われる。

0164NZC00 は Sekanina による電波観測で、NZC01 も CMOR1 による電波観測である。輻射点は分布図に見られるように拡散し、しかも、左上から右下へと連続的な流星活動域の中にある。SonotaCo ネットの J14 リストでは、NZC について自らが IAUMDCSD に提唱した 1111AQI の略符 AQI を用いているので注意が必要である。活動期間について、J14 では $\lambda s = 92.55 \sim 96.10$ と上の活動曲線の極大前の短期間としているのに対して、逆にGMN では $\lambda s = 80.8 \sim 148.2$ としている。これは上で触れた流星活動域に影響されているものと思われる。

前回も指摘し、「注意が必要な流星群」の中でも述べたように、IAUMDC の SZC には 2 つの異なった流星群 が含まれている。SZC00 と SZC01 が SZC と呼ばれるべきだが、両方とも電波観測であり、ビデオ観測ではほ とんど捉えられていない。SZC02 と SZC04 はビデオ観測で、この MIC とされるべき観測である。混乱の中 で"SZC"とされてきた流星群をここでは本来の呼称である MIC とする。前回は SZC としたが MIC に改める。

CAMS の第三報で登場する。0187PCA00 と PCA02 に近いが、活動が認められるのはこちらである。SonotaCo ネットの J14 リストにはどちらもないが、GMN では PCA として記載されている。PCA00 は $\lambda s = 114.40$ 、PCA02 は $\lambda s = 119$ としているが、上の活動曲線に見られるようにその時期には TCS の活動は終息している。前回は PCA としても TCS としても取り上げていない。

IMO のビデオネットで検出された群である。SonotaCo ネットの J14 リストでは出現期間を& = 108.62~113.18 としているが、これは上の活動曲線の後半にあたる。この活動曲線は観測流星数そのものではなく、周囲で観 測された流星数で補正したものであるが、流星数そのままだと観測条件によっては出現状況が違って見える ためであろう。

Kronk によると、Olsson-Steel が 1987 年に C/1979 Y1 (Bradfield), C/1771 A1 の予想輻射点として発表したのが 端緒だという。この Kronk の本には上田さんのデータが引用されている。IAUMDCSD の識別番号が以前の版 とは変更になり、かつては JPE00 は Jennikens の大著であったのが Molau と Rendtel による IMO のビデオ観測 となり、Jenniskens の報告が JPE01 となっている。現在の版では出版日時の欄が追加されてはいるが、以前の 版との比較に注意が必要である。0507UAN00 は JPE のことである。

IAUMDCの記録上最初の報告は2012年にポーランドとクロアチアの観測者たちから出されたものということになる。しかし、眼視観測で古くからペルセウス群前駆の活動は7月10日頃から始まるとされ、これは別群ではないかという議論があった。ポーランドの観測者たちは SonotaCo ネットの観測を利用して結論を得ており、ビデオ観測の進歩によって結論が導かれたことになる。上の活動曲線でAs=117以降の増加はペルセウス群の活動によるものである。

0533JXA: July xi-Arietids $\lambda s = 115, \lambda - \lambda s = 283.2, \beta = -5.5, \alpha = 37.7, \delta = 9.0, V_g = 68.8$

IAUMDC に JXA がクロアチアと EDMOND の観測によって登録されたのは 2014 年で、ここでも SonotaCo ネットの観測が活用されている。SonotaCo ネットの J14 リストでは、 $\lambda s = 104.67 \sim 107.29$ と極大前の短い期間が 掲載されている一方で、GMN は $\lambda s = 94.1 \sim 123.8$ と長くとっている。GMN が長めというのは一般的な傾向のようである。

この活動は IAUMDCSD において CAMS の第一報しか掲載されていない。輻射点分布図で中心から右に伸び る輻射点の広がりは 0001CAP で、XCS は CAP から 3~5 度しか離れていない。しかし、地心速度もわずかに 2km/s 程度 XCS の方が速く、CAP とは区別されるべきものであることを筆者も指摘している。SonotaCo ネッ トの J14 リストでは CAP の一部のような扱いだが、GMN では区別している。

前回同様、PPS を 2 つの活動に分けている。「注意が必要な流星群」の中で述べているように、先に述べた PPS_0 とこの PPS_1 は $\lambda s = 115$ 付近で輻射点移動の経路が交差していると推定される。上の輻射点分布図は $\lambda s = 115~125$ の期間に対するものであり、半径 3 度の円の左上側が PPS_0 の末期活動にあたる。PPS_0 は右上方 に、PPS 1 は右下方に移動する。

0184GDR00 は SonotaCo ネットの報告だが、Babadzhanov の 1950 年代の観測を初めとして、写真観測の時代から注目されていた。輻射点分布図で右下に伸びる輻射点は 0012KCG の初期活動であり、眼視観測では混同されていた。しかし、GDR の方は KCG よりも $\lambda s = 125$ 付近における地心速度が 10km/s 近くも速いので区別は可能である。

古くから知られていた流星群である。黄道型群としては輻射点分布の集中度が高く、活動曲線も明瞭である。 0692EQA00 は CAP の末期活動の一部とみられる。

これも古くから知られている流星群である。CAP に比べると輻射点は拡散しており、特に活動の後半では楕円形に伸びた形を示す。0003SIA01、0640AOA00はSDAの一部と考えられる。活動曲線は、前回のSonotaCoネットによるデータでは梅雨による観測量の減少を補正しきれておらず極大前の増加が急激であったが、GMNのデータからはほぼ対称であることが分かる。

この活動は大塚さんたちが眼視、写真等を複合して検出したものである。いわゆる「オリオン群の尻尾」の末端にあたるように見え、Jenniskens はその一員だと IAUMDCSD で注を付けている。輻射点分布が上下に伸びているが、これはほぼ「オリオン群の尻尾」の向きと一致する。前回は極大を $\lambda s = 137.5$ としており今回の推定とは5度ほど違っている。得られている流星数が多いにもかかわらず、活動曲線は凹凸が多く、上のグラフでも $\lambda s = 135~140$ の間に極大があるようにもみえる。

SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。しかし、SonotaCo ネットの J14 リストにはなく、前回も取り上げていない。ERI の数分の一程度の流星数しか得られていないが、活動曲線は明瞭である。

0007PER: Perseids $\lambda s = 140.5$, $\lambda - \lambda s = 283.4$, $\beta = 38.3$, $\alpha = 49.2$, $\delta = 58.1$, $V_g = 58.8$

(λ - λ s, β)の座標で表すと、ペルセウス群の輻射点はほぼ静止しているが、楕円形で上側に向けて彗星の尾のように広がりがある。また、極大後に輻射点は急速にぼやけていく。活動曲線は以前から知られているように台座と塔の二重構造を持っている。上の活動曲線で台座部分にあたる λ s < 130 では輻射点移動の様子も変化しているらしい。活動開始は SonotaCo ネットの J14 リストも GMN も λ s = 115 近くにしており、ZCS との判別に配慮している。活動終了は J14 が λ s = 156.36 としているのに対して、GMN は λ s = 140.7 としているが実際には λ s > 165 のものに対しても PER として判定している。

Whipple による写真観測で注目されるようになった流星群である。輻射点分布図で右上に見られるものが平年 に KCG として扱われることがある活動で区別する必要がある。活動には 7 年の周期があり、GMN の観測は 2019 年に開始されたが、運よく 2021 年の出現を捉えることができた。上の活動曲線はほぼ 2021 年の活動で ある。SonotaCo ネットの J14 リストが活動期間を λs = 136.55~150.34 としているのに対して、GMN は λs = 93.1 ~167.1 と非常に長く設定している。詳しくは「注意が必要な流星群」を参照されたい。

0199ADC: August delta-Capricornids $\lambda s = 143.65, \lambda - \lambda s = 180.1, \beta = 2.2, \alpha = 325.3, \delta = -11.5, V_g = 23.8$

0190ADC00 は-3 等よりも明るい写真流星から求められた活動である。ADC の輻射点は上の輻射点分布図の中 心から右下 5 度で、 $\lambda s = 147.70$ とされている。上の活動曲線は極めて鋭く、本稿で捉えた活動が ADC とは異 なるものであることを示唆している。SonotaCo ネットの J14 リストにも GMN にも載っていない。GMN で捉 えられた流星のほとんどは 2022 年のものであり、偶然、0190ADC00 の近くに突発出現した活動と考えられる。 ADC01 はこの活動を CAMS が捉えた報告であり、SonotaCo ネットでも検出されたことを関口さんが発表され ている。ADC とせずに、別の番号と名称を与えるべきだろう。

本稿で仮称 AXD(August xi Draconids)としている活動で、輻射点分布の左下の活動が KCG である。明らかに区 別できる活動だが、「注意が必要な流星群」で詳しく述べているように、IAUMDCSD は混乱している。活動曲 線の推定にみられるように As>150 では急速に活動は終息すると考えられ、それ以降に見られる活動とは区別 されるべきであろう。

0026NDA: Northern delta-Aquariids $\lambda s = 149, \lambda - \lambda s = 206.8, \beta = 7.0, \alpha = 353.4, \delta = 4.8, V_g = 37.9$

NDA の Remarks には NDA10 を除いて" Member of 297/DAQ"という注釈がついているが、DAQ のデータは空で s = 2 つまり不良データとされている。NDA04(SonotaCo ネットの観測)には" the name is 342/BPI August beta-Piscids"、NDA06 と NDA07 には"Previously considered as 508/TPI"と書かれている。この項の活動に対して NDA という呼称が初めて使われるようになったかを決めることは難しい。NDA は 0005SDA に対応するもの として λ s = 130 前後の活動に対して用いられていたものが、次第に活動の時期の遅いものに対して NDA と呼称するようになったのである。NDA よりは BPI がふさわしい名称であろう。この活動を GMN では NDA だ が、SonotaCo ネットの J14 では BPI としている。

最近では AXD にこの活動を合わせて AUD とすることが GMN も含めて見られるようになった。前回は IAUMDC に倣って AUD としていたが、今回はこの活動を本来ふさわしい ZDR と呼ぶことにする。IAUMDC の ZDR との関係等、詳しくは「注意が必要な流星群」を参照されたい。活動曲線では、 $\lambda s = 145$ 付近で AXD の経路と交差するために副次的に見せかけの極大を生じている。

0523AGC: August gamma-Cepheids $\lambda s = 155.4, \lambda - \lambda s = 263.2, \beta = 63.6, \alpha = 358.0, \delta = 76.6, V_g = 43.9$

これもクロアチアと SonotaCo ネットの観測を合わせて検出された流星群である。毎年、安定した出現をしているようで、SonotaCo ネットの J14 リストと GMN の数値もよく一致している。ほぼ近日点で地球軌道に垂直に近い角度で交差する長周期彗星型の軌道をもつ。近日点の方向が黄道面に沿って移動する形で、比較的活動期間が長い。

1935年にHoffmeisterが突発出現を捉えて以降、突発出現が数回見られているが、現在では毎年の出現が確認 されている。活動曲線に見られるように鋭い極大の前後に弱い活動が存在しているようにもみえる。しかし、 輻射点分布図に見られるように周囲の散在流星が多く、活動期間は限定的に捉える方が良いだろう。

これもクロアチアと SonotaCo ネットの観測を合わせて検出された流星群である。活動曲線の下に輻射点分布 図に対応する IAUMDCSD の流星群を示した。クロアチアのグループはこの PSO と同時に 0337NUE を報告し ているが、一番右側の×がそれを示している。他の2つの×も IAUMDCSD では NUE とされている。Jenniskens は左側の■を PSO として、「オリオン群の尻尾」の一部とみなしている。この領域で流星群と散在流星或いは 「オリオン群の尻尾」とを見分けることはかなり困難である。

CAMS の第一報で登場するが、その後の確認観測はない。0695APA00 の位置($\lambda s = 146, \lambda - \lambda s = 308.39, \beta = 18.75$) は、OMG の輻射点移動から推測される位置($\lambda s = 146, \lambda - \lambda s = 310.4, \beta = 18.6$)に極めて近い。同一の活動の可能 性がある。輻射点分布図で右側が Apex 領域になり、OMG はその東端に位置する。

NUE の最初の検出は SonotaCo ネットによるものである。「オリオン群の尻尾」の活動の中で、0191ERI に次い で活発な領域であるが、輻射点分布に見るように拡散している。左側に伸びる < 尻尾の分岐 > のようなものが 0552PSO で、右端のやや輻射点が集中しているところが、「注意が必要な流星群」で触れている 0583TTA00 と 1142SNT00 の活動である。輻射点移動を考慮しても、活動曲線は不明瞭である。活動期間は SonotaCo ネット の J14 リストが ふ= 160.50~171.46 と限定的なのに対して、GMN は ふ= 147.6~232 としている。GMN が掲載し ている観測流星数のグラフを活動曲線の下に示すが、明らかに複数の活動を含んでいるとみられる。

0208SPE: September epsilon-Perseids $\lambda s = 166.9, \lambda - \lambda s = 249.1, \beta = 21.1, \alpha = 47.4, \delta = 39.6, V_g = 64.0$

9月のペルセウス群という存在は眼視観測の時代から知られていたが、写真観測や電波観測が行われるよう になってもすっきりした結論は出なかった。Jenniskens は大著の中で SPE という名称を与えたが、データはま とまりがなく明解な結論を与えるものではなかった。決定打となったのが SPE00 となった SonotaCo ネットの 報告である。この最初の報告では"September-Perseids"となっていたが、Jenniskens によって SPE に統合された。 現在、SPE はビデオ観測では目立つ流星群の一つとなっている。

0033NIA と 0215NPI を統合して NPI としているが、前回はこの活動を NIA としている。詳しくは「注意が必要な流星群」(7.0033NIA と 0215NPI) を参照されたい。SonotaCo ネットの J14 リストも GMN も NIA と NPI の活動を区別し、NPI としての活動は上の活動曲線の後半部、特に J14 リストでは極めて限定的に活動は*λs* = 181.79~184.37 とされている。輻射点分布図の左下の活動を SPI と呼ぶことがあるが、これはほぼ STA の初期 活動と考えてよいものである。余談だが、NIA について IAUMDCSD では"Member of 298/IAQ complex"という 空のデータを参照するように書かれているが、これは古い版の名残である。

詳しくは「注意が必要な流星群」で述べたが、IAUMDCには2つの異なる活動がSLYとして登録されている。 0705UYL00はこのSLY 0のことである。SonotaCoネットのJ14リストでは、この活動をUYLとしている。

2015年に突発出現が CAMS とヨーロッパの観測者によって捉えられた。ただちに司馬さんが 5年の活動周期 を指摘され、筆者も SonotaCo ネット、CAMS、EDMOND、GMN のデータで確認している。上の輻射点分布と 活動曲線は GMN の 2020年の観測によるものである。次の出現は 2025年となる。出現のたびに活動が活発化 している傾向が見られるが、確認が求められる。当然、前回は取り上げておらず、SonotaCo ネットの J14 リス トにもない。

IAUMDCSD で 0221DSX00 に"Galligan and Baggaley, 2002"が用いられているが、これはアデライデ(オーストラリア風の発音)で 1961 年に行われた電波観測によって初検出をした Nilsson を掲げるべきだろう。ふたご群と双子の関係にあるであろうとされる。ビデオ観測の発達により光学観測の対象になった。

詳しくは「注意が必要な流星群」で述べたが、0424SOL00 はこの活動である。散在流星の偶然の集合ともみられるが、Lindblad のリストで"Lyncids"とされているものは SLY_1 に相当する。SonotaCo ネットの J14 リストで SLY01 は取り上げられていない。また、GMN では SLY_1 を SOL として扱っている。

2005年にヨーロッパで突発出現が捉えられたが、その後、SonotaCoネットの観測によって定常的な流星群であることが確認された。上の活動曲線からわかるように活動の活発な時間はほぼ1日に限られるため、観測地点が極大に遭遇する条件に恵まれるか否かということのようである。輻射点の密集度も高い。

0924SAN: 62-Andromedids $\lambda s = 196.8, \lambda - \lambda s = 214.4, \beta = 29.8, \alpha = 37.9, \delta = 46.5, V_g = 16.9$

CAMS の第二報で登場した活動で、前回は取り上げておらず、SonotaCo ネットの J14 リストにもない。これ はかなり特殊な流星群で、活動曲線の下に示した地心速度の分布で下の集合が SAN であり、上は散在流星で ある。輻射点分布図で〇で囲んだものが地心速度分布の下の集合 SAN で、周囲の×は散在流星とみなせる。

CAMS の第二報が初検出である。前回は取り上げておらず、SonotaCo ネットの J14 リストにもない。出現数 が少ないために、活動の状況は明らかではない。GMN では活動期間を*λs*=190.8~200.8、極大を*λs*=196.5 とや や前にしている。

0002STA_SE: Southern Taurids_SE $\lambda s = 201.5, \lambda - \lambda s = 195.8, \beta = -4.4, \alpha = 36.4, \delta = 9.8, V_g = 28.8$

詳しくは「注意が必要な流星群」で述べたが、STA は 10 月のおひつじ群(STA_SE)と 11 月のおうし群(STA_SF) に分けて考えねばならない。活動曲線に見られる 200以降の増加は STA_SF によるものである。輻射点が近く、地心速度もほぼ同じなので、この 2 つの活動を区別するのは、単純に 10 月の極大が STA_SE、11 月の極大が STA_SF とする程度の方法しかない。STA_SF の活動は年により大きく変化するが、この STA_SE の出現は例年ほぼ一定である。

最初の検出は植原さんたちのビデオ観測で、いわば、SonotaCo ネットの前身の活動成果と言える。輻射点もよ く密集し、活動曲線も鋭い。極大に遭遇するか否かで、見かけ上年により得られる流星数に差ができる。最初 の検出となった 2006 年は 14 個の流星が観測されたが、SonotaCo ネットで 2007 年、2008 年に得られた OCU の流星は、それぞれ 3 個と 5 個であった。

0023EGE: epsilon-Geminids $\lambda s = 203.7$, $\lambda - \lambda s = 254.9$, $\beta = 5.1$, $\alpha = 99.7$, $\delta = 28.3$, $V_g = 68.7$

オリオン群の副次的な輻射点のように扱われた時代から存在は知られていた。輻射点分布の右下がオリオン 群で、周囲の散在流星も多い。活動曲線は変動が激しく、極大は $\lambda s = 198 \sim 208$ のどこであってもおかしくない ほどである。これは活動が年により大きく変化するためである。生の観測流星数(DR ではない)による極大 は 2019 年 $\lambda s = 211.4$ 、2020 年 $\lambda s = 205.6$ 、2021 年 $\lambda s = 202.1$ 、2022 年 $\lambda s = 208.1$ となり、平均では $\lambda s = 211.4$ であ る。IAUMDCSD でも $\lambda s = 198 \sim 209.70$ と幅があり、本稿で示した $\lambda s = 203.7$ も参考値である。

ハーバードにおけるスーパーシュミットでの写真観測で見出された流星群である。オリオン群の極大期に活動するにもかかわらず、眼視観測で捉えられることは稀である。Apex 領域に接しているが、周囲の流星活動が低く、写真やビデオ観測では目立つ群である。CMOR の画像でも、毎年、弱いながらしっかりとした活動が捉えられている。

詳しくは「注意が必要な流星群」で述べたように、TCA と 0481OML を一つの活動として扱う。前回は TCA だけとして取り上げたが、活動曲線は前回と今回得られたものはほぼ同様である。

調査方法の項でオリオン群を例として詳しく述べており、「注意が必要な流星群」で「オリオン群の尻尾」について書いているのでそちらも参照されたい。SonotaCoネットはオリオン群が活発であった 2007~9 年の観測を含んでいるが、上に示した活動曲線は前回の 2010~18 年(平年)のものに相当する。

0524LUM: lambda-Ursae Majorids $\lambda s = 214.8, \lambda - \lambda s = 284.4, \beta = 36.8, \alpha = 158.2, \delta = 49.2, V_g = 60.5$

クロアチアの観測と SonotaCo ネットの観測を合わせて検出された活動である。軌道は近日点が黄道面に沿っ て回転するタイプで、このような流星群は(λ-λs, β)の座標上で輻射点がほぼ移動しない。活動は毎年安定して おり、SonotaCo ネットの J14 リストと GMN の掲げる数値はよく一致している。

これも 0524LUM 同様、クロアチアの観測と SonotaCo ネットの観測を合わせて検出された活動である。 0387OKD や 0392NID といったトロイダル領域の活動に近いが、LUM や SLD が CMOR に、逆に OKD と NID がビデオで明確になることはない。木星族タイプであるが、軌道は黄道面にほぼ鉛直に交差している。

0002STA_SF: Southern Taurids_SF $\lambda s = 222.2, \lambda - \lambda s = 192.3, \beta = -4.5, \alpha = 53.2, \delta = 14.5, V_g = 28.5$

詳しくは「注意が必要な流星群」で述べたが、STA_SEとは区別されるべき活動である。活動が強化される年には、著しく出現数が増える。上の輻射点分布図と活動曲線はほぼ 2022 年の活動を表している。

CAMSの第一報で登場した流星群であるが、IAUMDCSDに他の報告はない。毎年の活動は安定し、SonotaCo ネットのJ14 リストとGMN が掲げる情報もよく一致している。ほぼ近日点付近で地球軌道と交差し、軌道傾 斜角も大きいので活動期間は短い。

0338OER00 は SonotaCo ネットによって見出され、DGE00 は SonotaCo ネットと CAMS のデータを合わせて検 出された流星群である。0338OER は STA の南端からまるで枝分かれするように輻射点移動して 0490DGE01 と 接続するように見える。その後、さらに弱い活動が南に伸びて、0709LCM にまでつながるようでもある。詳 しくは「注意が必要な流星群」で述べたが、0490DGE00 はこの南下する弱い活動の中にある。DGE01 は CAMS の第一報で登場する。ここでは OER と DGE だけを統合するが、この中には 1115NXE00 も含まれる。輻射点 分布同様に活動曲線も不明瞭で極大は*&s* = 220~235 の範囲程度としか分からない。

アンドロメダ群は 2021 年に突発出現をしたが、極大が λs = 245.8 で平年では活動が見られない時期である。しかし、突発時の輻射点の位置は突発より前の輻射点移動の延長上に正確に当てはまる。表 I-7 に突発時の輻射 点等を掲載していないので、ここで紹介する: λs = 245.8, $\lambda - \lambda s$ = 155.0, β = 30.4, α = 25.9, δ = 43.5, V_g = 15.4, e = 0.705, q = 0.864, i = 12.3, ω = 225.5, Ω = 245.8, λ_{Π} = 110.7, β_{Π} = -8.7, a = 2.93。平年でも活動曲線は凸凹で、軌道 上の流星物質の分布が均等でないことを示している。2021 年の突発も平年の活動の極端な例といえるだろう。 SonotaCo ネットの J14 リストは活動期間を λs = 231.79~232.48 となっているが、アンドロメダ群はもっと長期 にわたって活動する。輻射点はかなり高速で北上するという特徴がある。

これもクロアチアと SonotaCo ネットの観測を合わせて検出された活動である。輻射点の広がりがやや大きく、 活動曲線も凸凹が多い。2021 年と 2022 年で極大がずれているようにもみえる。活動期間がやや長いので、観 測された群流星の総数の割に一日当たりの流星数が少なく、得られている情報には曖昧さが残る。

詳しくは「注意が必要な流星群」で述べたが、GMN は NTA を細分している。上の輻射点分布図と活動曲線からみて単一の活動とみる方が良い。 $\lambda = 227.5$ 付近で活動曲線が落ち込んでいるのは、2022 年の GMN の観測 条件が良くなかったことによるもののようで、見せかけのものと考えられる。

活動曲線で、 $\lambda s = 229$ の盛り上がりは 2021 年、 $\lambda s = 239$ のものは DR3_10 特有の現象で、それぞれ他の年また他の推定曲線では現れていない。全体としてはほぼ Rotation DR の曲線に沿った推移とみられる。

CMOR2 の電波観測によって検出された群である。前回は取り上げておらず、SonotaCo ネットのJ14 リストに もない。輻射点分布で半径 3 度の円の左下側に 0559MCB00 が、右上側に 0395GCM00 がある。GCM は CMOR2 の観測であるが、輻射点分布は左下から右上に伸びており、MCB も GCM も ACA の活動の一部と考えてよい であろう

1925年のアメリカ、1935年のインドでの突発出現の後、1950、1960年代の写真・電波観測では記録されず、 1985年にアメリカで観測されるまで捉えられることはなかった。その後、1995年にも突発がみられ、10年周 期の活動が期待されたが、その後は期待されるほどの活動は見られていない。しかし、AMOの活動は少数な がら毎年みられることがビデオ観測の普及により明らかとなっている。IAUMDCSDでは、DMSによるAMO 最初の写真観測の報告が s = -2 となっているが、資料を補って AMO00とすべきであろう。AMOの軌道は周 期数十年以上であり、10年の周期はトレイルの接近による見せかけのものであるようだ。

SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。活動期間が短いが、輻射点はよくま とまっており、毎年、安定した活動をみせている。0527UUM00 は NSU に含められるべきである。

輻射点分布図で左下は 0019MON である。眼視、写真観測の時代から知られていたが、この MON と一括りに 「いっかくじゅう群」と呼ばれたりもしていた。NOO と MON がはっきりと区別されるようになったのは Jenniskens の大著以降と思われる。活動曲線は非対称で、後半の減少は速い。

-10

As 260

現在の IAUMDCSD では欠番になっているが、かつては 0014XOR(χ -Orionids)という分類がハーバードの写真 観測以来存在した。Lindblad の流星群調査以来、南北の群に分けられるようになり、Jenniskens が 0256ORN、 0257ORS というコードをつけた。ORS は、上の輻射点分布図と活動曲線にみられるように、辛うじて STA と 区別されるが、ORN は確認されていない。SonotaCo ネットの J14 リストでは STA の一部として扱われ、GMN では活動終了を $\lambda s = 275.2$ と長くとっている。

1096NAC: November alpha-Corvids $\lambda s = 246.5, \lambda - \lambda s = 286.2, \beta = -20.5, \alpha = 165.0, \delta = -16.0, V_g = 66.6$

CAMS の第三報で初めて登場する新しい群である。前回は取り上げておらず、SonotaCo ネットの J14 リスト にも GMN にもない。輻射点分布図の右上が Apex 領域になり、かろうじて散在の活動と区別できる。

SonotaCo ネットによって検出された群だが、詳しくは「注意が必要な流星群」で述べたように、IAUMDCSD では混乱があり、2 つの活動が TPY とされている。ここでは TPY_0 と TPY_1 として区別する。GMN ではこの活動を DTP としているので注意が必要である。

0336DKD: December kappa-Draconids $\lambda s = 251$, $\lambda - \lambda s = 243.0$, $\beta = 61.5$, $\alpha = 186.1$, $\delta = 70.5$, $V_g = 43.8$

SonotaCo ネットの観測によって検出された活動である。wgn に掲載された当初は KDR とされていたが、 IAUMDCSD では CMOR2 の観測に 0380KDR の名称が与えられ、この活動は 0336DKD となった。SonotaCo ネ ットの J14 では KDR のままなので注意が必要である。

これも SonotaCo ネットの観測によって検出された活動である。GMN の観測では 2021 年の観測流星数よりも 2022 年の方が多いのが通常だが、この群では 2021 年の流星数が 2022 年の 1.6 倍になっている。前回使用した SonotaCo ネットの観測でも、年による活動の変動が大きく、周期性はあるのか、今後の観測の注目点である。

0334DAD: December alpha-Draconids $\lambda s = 253.5$, $\lambda - \lambda s = 264.2$, $\beta = 62.7$, $\alpha = 204.6$, $\delta = 62.2$, $V_g = 40.6$

SonotaCo ネットによって初検出された活動が続く。輻射点が拡散し、活動曲線も広がっている。0392NID01 は 上の輻射点分布で半径 3 度の円の左内側、0392NID00 は半径 6 度の円の少々左外側になる。NID は IAUMDCSD で「確定群候補」とされているが、検討の余地がある。輻射点移動を考慮しないと NID00 と NID01 の間に DAD03 と 0753NED00 が挟まれていることになる。DAD の活動は不明の点が多く、いくつかに分解されるか もしれない。

これほど輻射点分布も活動曲線も明瞭なのに、ハーバードの写真観測で検出されるまで知られていなかった。 NMSの眼視観測で最も早いものが1961年である。光度比が特別小さくて、写真・ビデオ向きの流星群という わけでもない。眼視観測では、この程度の出現ではHR=1~2に相当し、注意しないと見逃すということのよう だ。

0502DRV: December rho-Virginids $\lambda s = 255.6, \lambda - \lambda s = 286.0, \beta = 15.0, \alpha = 187.5, \delta = 13.1, V_g = 68.2$

SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。1116NFL00 は DRV に含められるべきものだろう。この群についても活動期間を SonotaCo ネットの J14 リストでは短めに、GMN では長めにとっている。

これも SonotaCo ネットとクロアチアの観測を合わせて検出された活動である。観測された流星数でみると、 2021 年と 2022 年の極大は、それぞれ λs = 252.3、 λs = 263.3 と 10 度の違いがある。これは恐らく、観測条件の 違いによるもので、活動自体の変化ではないであろう。しかし、前回使用した SonotaCo ネットの観測でも極 大は明確ではなく、極大は λs = 255~265 の範囲と考えた方がよいだろう。

この時期、この領域には 0255PUV、0300ZPU、0301PUP00、0302PVE00、0746EVE00 という活動が想定されて いる。上の輻射点分布で見るように拡散した活動で、しかも北半球からの観測が難しい位置なので、今後の南 半球での観測が期待される。それによっては PUV という名称が適切かということも議論になろう。PUV は Jenniskens が南半球の眼視観測から設定したものだが、IAUMDCSD では、データが不十分ということで、削除 の候補になっている。前回は取り上げておらず、SonotaCo ネットの J14 リストでも、GMN でも EVE としてい る。

0250NOOの項目で述べたように、輻射点分布で上に見えている NOO とこの MON とは明確に区別されるよう になったのは比較的新しい。年々の活動は安定しているが、極大の違いが*∆λs* = 12 で輻射点分布図のように近接した位置関係では、眼視観測による区別は困難である。

CAMS の第一報で GEM とほぼ輻射点が一致する 0641DRG00 という地心速度が GEM よりも 5km/s ほど速い 活動が報告されているが、確認した報告はない。活動曲線は図に見られるように非対称で、極大後は活動は急 速に終息する。0390THA は確定群とされ、GMN も記載しているが、GEM の最初期活動との区別は困難であ る。かつての SonotaCo ネットの設定では 0644JLL と 0747JKL を含むほど末期出現を長くとっていたが、J14 リストで $\lambda s = 265.38$ までとなった。GMN では JLL の活動期間を $\lambda s = 246.8 \sim 280.2$ としているが、これは IAUMDCSD に掲載されている $\lambda s = 288$ (または $\lambda s = 288$)から外れている。THA から JLL、JKL は GEM の輻 射点移動に沿っており、GEM の活動に関連があるのか今後の課題である。

SonotaCo ネットの観測によって初検出されたものである。しかし、1117NEV00 という SonotaCo ネットの報告 は、この XVI の初期活動とみなせる。輻射点はよくまとまっているが、活動曲線は明瞭ではなく、極大はは っきりしない。上の活動曲線の凸凹は年による活動の変化による。

0497DAB: December alpha-Bootids $\lambda s = 263.1, \lambda - \lambda s = 298.1, \beta = 32.6, \alpha = 212.1, \delta = 21.9, V_g = 59.4$

SonotaCo ネットと CAMS のデータを合わせて検出された流星群である。活動曲線の2つの突出部は、2021 年 と 2022 年で極大の太陽黄経が異なることによる。

CAMSの第一報によって検出された群である。詳しくは「注意が必要な流星群」で述べたように、TPY に分類 されたために混乱を生じた。既にある TPY ではなく、別の名前を与えられるべきであった。GMN ではこちら を TPY としているが、SonotaCo ネットの J14 リスト同様、DMH とすることが妥当であろう。ただし、CAMS から TPY01 に別の名称が提案されれば、そちらを使用する方が良い。

ここでの「かみのけ群」は0020COM、0032DLM、0090JCO、0506FEV を含めている。FEV は確定群とされているが、「かみのけ群」の輻射点、活動曲線の延長上にあり、区別できない。SonotaCo ネットのJ14 リストではFEV は独立したものとしていないが、GMN は別群として扱っている。輻射点及び、極大の太陽黄経からすると DLM の方が適当な名称である。

1945年の突発出現以降、1986年と2000年の活発な活動はよく知られている。その後も小規模な活動は不規則 に観測されてきた。現在ではビデオ観測によって毎年の活動が捉えられているが、年による極大の太陽黄経、 また、輻射点の微妙な変化も見られている。

0428DSV: December sigma-Virginids $\lambda s = 271.5, \lambda - \lambda s = 293.4, \beta = 15.0, \alpha = 208.5, \delta = 4.4 V_g = 66.1$

0513EPV00、0500JPV00~02、1124HTV00 がこの活動に含まれる。DSV はイギリスの人が 2011 年に SonotaCo ネットのデータを用いて見出したもので、EPV は翌年、クロアチアの観測と SonotaCo ネットのデータを用い た調査で報告されている。一夜当たりの出現数は多くないのではっきりしないが、年により極大の太陽黄経は 異なるようである。SonotaCo ネットの J14 リストでは DSV と JPV を EPV に含めており、GMN は DSV とし て統一している。

SAAMER というアルゼンチンの流星レーダーの観測で検出されたもので、それに続く観測は報告されていない。0255PUV を含め、 $\lambda s = 240~280$ の間には $\lambda - \lambda s = 250~280$ で、 $\beta = -60$ 付近の領域に輻射点の活動域がある。それをどのようにまとめることができるのか、今後の南半球での観測が期待される。さすがに、前回は取り上げておらず、SonotaCo ネットの J14 リストにはない。

0319JLE: January Leonids $\lambda s = 281.6, \lambda - \lambda s = 219.5, \beta = 10.2, \alpha = 147.0, \delta = 24.1, V_g = 51.9$

CMOR1の電波観測によって検出された群である。CMORの画像でも輻射点は小さくまとまっており、上の輻射点分布図でも中心付近の小さくまとまった集合が KVE で周囲は散在流星であろう。活動曲線ももっと鋭いかもしれない。

輻射点分布が特異で、ハート型に右上と左下に伸びた形をしている。SonotaCo ネットの観測からも同じ結果 が得られているので、QUA の特徴だと思われる。活動曲線は非対称で、*As* = 287 付近に緩やかなピークをも つ弱い活動が見られることも SonotaCo ネットのデータと同じ結果である。しかし、GMN は QUA の活動を*As* <285 としている。

0331AHY: alpha-Hydrids $\lambda s = 283.8, \lambda - \lambda s = 207.9, \beta = -26.2, \alpha = 127.1, \delta = -8.0, V_g = 43.6$

CMOR1 で見出された流星群だが、ビデオ観測でもよく捉えられている。0319JLE に比べてビデオ観測向きの 流星群であるようだ。CMOR の画像でも明確な極大は見られないが、上の活動曲線でもな=280~286 の期間の 活動はほぼ同等である。

上下の活動を分けて調べたところ、 $V_g > 44.5(\text{km/s})$ の方がまとまった結果となった。上に示した輻射点分布と活動曲線は $V_g > 44.5(\text{km/s})$ のものについての結果である。輻射点分布で半径3度以内かつ $V_g > 44.5(\text{km/s})$ のものについての結果である。転射点分布で半径3度以内かつ $V_g > 44.5(\text{km/s})$ のものに○をつけた。 $V_g < 44.5(\text{km/s})$ のものも似たような結果ではあるが、これほど明瞭な結果にはならなかった。上の表の3つの活動は同じものを表しているようだが、OLSとKCAの方が活動をやや的確に表しているようである。SonotaCoネットのJ14リストにはKCA、GMNにはOLEとKCAがそれぞれ記載されている。0323XCB: xi-Coronae Borealids $\lambda s = 294.8, \lambda - \lambda s = 307.3, \beta = 50.8, \alpha = 250.2, \delta = 29.3, V_g = 45.4$

0321TCB、0322LBO、0323XCB はいずれも CMOR1 の電波観測によって検出された群である。TCB と LBO の 方が電波観測では活発な活動が捉えられているにもかかわらず、ビデオ観測では TCB と LBO は散在流星の活 動に埋もれている。XCB の方がビデオ観測向きなのであろう。前回も XCB だけは取り上げているが、SonotaCo ネットの J14 リストいずれも掲載されていない。GMN には LBO と XCB が載っている。活動は年により変化 するようで、活動曲線の凹凸はそれによるものと思われる。

SonotaCo ネットの観測によって初検出された活動である。使用したデータの半数以上が 2023 年の観測で、活動曲線は 2023 年のものと言っても言い過ぎではない。輻射点分布は、前回の SonotaCo ネットによるものでも 右下がりである。輻射点移動の方向も右下がりであるが、上の分布は輻射点移動を考慮したものであり、この 形は XUM の特徴であろう。

0404GUM: gamma-Ursae Minorids $\lambda s = 299.8, \lambda - \lambda s = 218.8, \beta = 74.5, \alpha = 229.7, \delta = 67.3, V_g = 29.4$

CMOR2 の電波観測によって検出された群であるが、ビデオ観測でもよく捉えられている。ほぼ XUM と同じ 時期に同じ規模の活動をしているのに CMOR の観測までは知られていなかった。SonotaCo ネットの観測でも 2007~9 年の観測では GUM の活動は明瞭ではないが、2010 年以降の観測では存在が明らかに認められる。前 回は取り上げていない流星群であり、今後の活動変化が注目される。

ACB はイギリスの人が 2011 年に SonotaCo ネットのデータを用いて見出したものである。活動開始後、すぐ に極大に達して、その後緩やかに活動が衰えていくという活動曲線が特徴である。

AMOR の電波観測によって検出された群である。その後も CMOR1、CMOR2 と電波観測では目立つ存在であったが、ビデオ観測での確認は遅れた。SonotaCo ネットの J14 リストには掲載されていない。CMOR の画像で見ると 0405MHY が南東側に連なるように活動している。上の輻射点分布図で MHY は AAN の左下にあたるが、電波観測ほどははっきりしない。

2011 年 2 月 4 日に CAMS で 6 個の流星が捉えられたというのが最初の報告である。上の活動曲線でも、半値幅はおよそ半日であり、観測時間が極大に合わなければ捉えることは難しい。SonotaCo ネットの J14 リストにもなく、前回は取り上げていない。

1032FHY: February Hydrids $\lambda s = 325.4, \lambda - \lambda s = 160.7, \beta = -18.9, \alpha = 123.9, \delta = 0.4, V_g = 16.1$

2018年2月9~17日の間に CAMS で17個の流星が捉えられたという速報が最初の記録である。前回は取り上 げておらず、SonotaCo ネットのJ14リストにも GMN にもない。。輻射点もよく集中し、極大も明確である。 輻射点の位置と地心速度から考えると、流星体の空間密度は相当高いと思われる

CAMS の第3報で登場する新しい流星群である。前回は取り上げておらず、SonotaCo ネットの J14 リストに も GMN にも掲載されていない。GMN の観測流星数は総数でわずか 34 個、うち 28 個が 2023 年のものであ る。今後の南半球での観測の進展が期待される。2023 年の流星の実数の推移からは、活動曲線は非対称で極 大後の減少が速いらしい。

0915DNO: delta-Normids $\lambda s = 334.2, \lambda - \lambda s = 271.5, \beta = -24.9, \alpha = 237.8, \delta = -45.7, V_g = 66.7$

CAMS の第二報で登場した流星群である。前回は取り上げておらず、SonotaCo ネットの J14 リストにもないが、GMN は掲載している。これも南方の流星群であり、46 個中 33 個が 2023 年の観測と南半球における観測の進展がうかがえる。

クロアチアの観測と SonotaCo ネットワークの観測を合わせて検出された活動である。前回は取り上げていない活動である。得られた流星数が 55 と少ない割には明瞭な活動曲線である。SonotaCo ネットの J14 リストにも GMN にも掲載されているが、J14 で活動期間を*λs* = 342.73 ~ 343.46 としているのは短過ぎるだろう。

2009 年3月の IMO のビデオネットの観測が最初の検出報告である。CMOR の画像では痕跡程度しか認められず、ビデオ観測向きの流星群のようである。

1953年3月12~13日にスーパーシュミットで5個のEVIが記録されていることをJenniskensが指摘している。 このように、EVIの活動は年による変化が大きく、4年周期であると指摘されている。GMNでも総観測流星 数は2022年の方が多いにもかかわらず、EVIの数は2021年の方が多い。輻射点分布は移動を考慮しても細長 い形になる。これは筆者が指摘しているように、EVIの軌道が黄道面に沿って回転した広がりを持っているた めである。

0893EOP: eta-Ophiuchids $\lambda s = 358.2, \lambda - \lambda s = 262.8 \beta = 6.7, \alpha = 260.7, \delta = -16.5, V_g = 70.8$

これは CAMS の第二報で登場した流星群である。まだ得られている EOP の数が 58 と少ないが、活動曲線は 非対称で、極大後半の活動が長いとみられる。前回は取り上げていないが、SonotaCo ネットの J14 リストにも GMN にも掲載されている。しかし、J14 リストでは活動期間を*As* = 354.60~356.36 と EOP の活動の前半に限っ ている。